Asymptotic stability of solitons for nonlinear hyperbolic equations
    
    
  
  
  
      
      
      
        
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 68 (2013) no. 2, pp. 283-334
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Fundamental results on asymptotic stability of solitons are surveyed, methods for proving asymptotic stability are illustrated based on the example of a nonlinear relativistic wave equation with Ginzburg–Landau potential. Asymptotic stability means that a solution of the equation with initial data close to one of the solitons can be asymptotically represented for large values of the time as a sum of a (possibly different) soliton and a dispersive wave solving the corresponding linear equation. The proof techniques depend on the spectral properties of the linearized equation and may be regarded as a modern extension of the Lyapunov stability theory. Examples of nonlinear equations with prescribed spectral properties of the linearized dynamics are constructed.
Bibliography: 45 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
nonlinear hyperbolic equations, asymptotic stability, relativistic invariance, Hamiltonian structure, symplectic projection, invariant manifold, kink, Fermi's golden rule, scattering of solitons, asymptotic state.
Mots-clés : soliton
                    
                  
                
                
                Mots-clés : soliton
@article{RM_2013_68_2_a2,
     author = {E. A. Kopylova},
     title = {Asymptotic stability of solitons for nonlinear hyperbolic equations},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {283--334},
     publisher = {mathdoc},
     volume = {68},
     number = {2},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2013_68_2_a2/}
}
                      
                      
                    TY - JOUR AU - E. A. Kopylova TI - Asymptotic stability of solitons for nonlinear hyperbolic equations JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2013 SP - 283 EP - 334 VL - 68 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RM_2013_68_2_a2/ LA - en ID - RM_2013_68_2_a2 ER -
E. A. Kopylova. Asymptotic stability of solitons for nonlinear hyperbolic equations. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 68 (2013) no. 2, pp. 283-334. http://geodesic.mathdoc.fr/item/RM_2013_68_2_a2/
