Soliton asymptotics for systems of `field-particle' type
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 68 (2013) no. 2, pp. 227-281 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This survey is devoted to the recent mathematical progress in the study of interaction between particles and fields. It covers a series of papers from 2000 till now. Three systems describing the interaction of a field and a charged particle are considered: the scalar Klein–Gordon field or the wave field coupled to a particle, and the Maxwell–Lorentz system describing a charged particle in the Maxwell field. The Wiener condition on the charge density of the particle was introduced in the first papers on long-time convergence to solitons in the absence of external potentials (the 1990s) and turned out to play an important role in the investigations reflected here of soliton asymptotics for solutions with initial data sufficiently close to invariant solitary manifolds. Our approach is based on using the Hamiltonian structure of the systems and the Buslaev–Perelman method of symplectic projection. Bibliography: 49 titles.
Keywords: non-linear system of ‘field-particle’ type, solitary manifold, symplectic projection, linearization around a soliton, decay of the transversal component, Wiener condition.
Mots-clés : soliton, modulation equations
@article{RM_2013_68_2_a1,
     author = {V. M. Imaykin},
     title = {Soliton asymptotics for systems of `field-particle' type},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {227--281},
     year = {2013},
     volume = {68},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2013_68_2_a1/}
}
TY  - JOUR
AU  - V. M. Imaykin
TI  - Soliton asymptotics for systems of `field-particle' type
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2013
SP  - 227
EP  - 281
VL  - 68
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/RM_2013_68_2_a1/
LA  - en
ID  - RM_2013_68_2_a1
ER  - 
%0 Journal Article
%A V. M. Imaykin
%T Soliton asymptotics for systems of `field-particle' type
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2013
%P 227-281
%V 68
%N 2
%U http://geodesic.mathdoc.fr/item/RM_2013_68_2_a1/
%G en
%F RM_2013_68_2_a1
V. M. Imaykin. Soliton asymptotics for systems of `field-particle' type. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 68 (2013) no. 2, pp. 227-281. http://geodesic.mathdoc.fr/item/RM_2013_68_2_a1/

[1] H. A. Lorentz, Versuch einer Theorie der electrischen und optischen Erscheinungen in bewegten Körpern, E. J. Brill, Leiden, 1895, 139 pp. | Zbl

[2] H. A. Lorentz, The theory of electrons and its applications to the phenomena of light and radiant heat, reprint of the 2nd ed., Dover Publications, Inc., New York, 1953, 343 pp. | Zbl

[3] J. C. Maxwell, “A dynamical theory of the electromagnetic field”, Philos. Trans. R. Soc. Lond., 155 (1865), 459–512 | DOI

[4] E. Wiechert, “Elektrodynamische Elementargesetze”, Arch. Néerl. (2), 5 (1900), 549–573 | Zbl

[5] M. Abraham, Theorie der Elektrizität, v. 2, Elektromagnetische Theorie der Strahlung, B. G. Teubner, Leipzig, 1905, 405 pp. | Zbl

[6] A. Komech, E. Kopylova, D. Stuart, “On asymptotic stability of solitons in a nonlinear Schrödinger equation”, Commun. Pure Appl. Anal., 11:3 (2012), 1063–1079 | DOI | MR

[7] A. I. Komech, E. A. Kopylova, H. Spohn, “Scattering of solitons for Dirac equation coupled to a particle”, J. Math. Anal. Appl., 383:2 (2011), 265–290 | DOI | MR | Zbl

[8] V. Imaikin, A. Komech, N. Mauser, “Soliton-type asymptotics for the coupled Maxwell–Lorentz equations”, Ann. Henri Poincaré, 5:6 (2004), 1117–1135 | DOI | MR | Zbl

[9] H. Spohn, Dynamics of charged particles and their radiation field, Cambridge Univ. Press, Cambridge, 2004, xvi+360 pp. | DOI | MR | Zbl

[10] V. S. Buslaev, G. S. Perel'man, “On the stability of solitary waves for nonlinear Schrödinger equations”, Nonlinear evolution equations, Amer. Math. Soc. Transl. Ser. 2, 164, Amer. Math. Soc., Providence, RI, 1995, 75–98 | MR | Zbl

[11] V. S. Buslaev, C. Sulem, “On asymptotic stability of solitary waves for nonlinear Schrödinger equations”, Ann. Inst. H. Poincaré Anal. Non Linéaire, 20:3 (2003), 419–475 | DOI | MR | Zbl

[12] S. Cuccagna, “Stabilization of solutions to nonlinear Schrödinger equations”, Comm. Pure Appl. Math., 54:9 (2001), 1110–1145 | DOI | MR | Zbl

[13] S. Cuccagna, “On asymptotic stability of ground states of NLS”, Rev. Math. Phys., 15:8 (2003), 877–903 | DOI | MR | Zbl

[14] A. Soffer, M. I. Weinstein, “Resonances, radiation damping and instability in Hamiltonian nonlinear wave equations”, Invent. Math., 136:1 (1999), 9–74 | DOI | MR | Zbl

[15] A. Soffer, M. I. Weinstein, “Selection of the ground state for nonlinear Schrödinger equations”, Rev. Math. Phys., 16:8 (2004), 977–1071 | DOI | MR | Zbl

[16] A. Komech, H. Spohn, M. Kunze, “Long-time asymptotics for a classical particle interacting with a scalar wave field”, Comm. Partial Differential Equations, 22:1-2 (1997), 307–335 | MR | Zbl

[17] A. I. Komech, H. Spohn, “Soliton-like asymptotics for a classical particle interacting with a scalar wave field”, Nonlinear Anal., 33:1 (1998), 13–24 | DOI | MR | Zbl

[18] A. Komech, M. Kunze, H. Spohn, “Effective dynamics for a mechanical particle coupled to a wave field”, Comm. Math. Phys., 203:1 (1999), 1–19 | DOI | MR | Zbl

[19] A. I. Komech, H. Spohn, “Long-time asymptotics for the coupled Maxwell–Lorentz equations”, Comm. Partial Differential Equations, 25:3-4 (2000), 559–584 | DOI | MR | Zbl

[20] V. Imaikin, A. Komech, P. Markowich, “Scattering of solitons of the Klein–Gordon equation coupled to a classical particle”, J. Math. Phys., 44:3 (2003), 1202–1217 | DOI | MR | Zbl

[21] V. Imaikin, A. Komech, H. Spohn, “Scattering theory for a particle coupled to a scalar field”, Discrete Contin. Dyn. Syst., 10:1-2 (2003), 387–396 | DOI | MR | Zbl

[22] V. Imaikin, A. Komech, H. Spohn, “Soliton-type asymptotics and scattering for a charge coupled to the Maxwell field”, Russ. J. Math. Phys., 9:4 (2002), 428–436 | MR | Zbl

[23] P. Germain, “Finite energy scattering for the Lorentz–Maxwell equation”, Ann. Henri Poincaré, 9:5 (2008), 927–943В | DOI | MR | Zbl

[24] V. Imaikin, A. Komech, H. Spohn, “Rotating charge coupled to the Maxwell field: scattering theory and adiabatic limit”, Monatsh. Math., 142:1-2 (2004), 143–156 | DOI | MR | Zbl

[25] V. Imaikin, A. Komech, B. Vainberg, “On scattering of solitons for the Klein–Gordon equation coupled to a particle”, Comm. Math. Phys., 268:2 (2006), 321–367 | DOI | MR | Zbl

[26] V. Imaikin, A. Komech, B. Vainberg, “On scattering of solitons for wave equation coupled to a particle”, Probability and mathematical physics, CRM Proc. Lecture Notes, 42, Amer. Math. Soc., Providence, RI, 2007, 249–271 | MR | Zbl

[27] V. Imaikin, A. Komech, B. Vainberg, “Scattering of solitons for coupled wave-particle equations”, J. Math. Anal. Appl., 389:2 (2012), 713–740 | DOI | MR | Zbl

[28] V. Imaikin, A. Komech, H. Spohn, “Scattering asymptotics for a charged particle coupled to the Maxwell field”, J. Math. Phys., 52:4 (2011), 042701, 33 pp. | DOI | MR

[29] A. Soffer, M. I. Weinstein, “Multichannel nonlinear scattering for nonintegrable systems”, Integrable systems and applications (Île d'Oléron, 1988), Lecture Notes in Phys., 342, Springer, Berlin, 1989, 312–327 | DOI | MR | Zbl

[30] A. Soffer, M. I. Weinstein, “Multichannel nonlinear scattering for nonintegrable equations”, Comm. Math. Phys., 133:1 (1990), 119–146 | DOI | MR | Zbl

[31] A. Soffer, M. I. Weinstein, “Multichannel nonlinear scattering for nonintegrable equations. II. The case of anisotropic potentials and data”, J. Differential Equations, 98:2 (1992), 376–390 | DOI | MR | Zbl

[32] A. Soffer, M. I. Weinstein, “Theory of nonlinear dispersive waves and selection of the ground state”, Phys. Rev. Lett., 95:21 (2005), 213905, 4 pp. | DOI

[33] V. S. Buslaev, G. S. Perel'man, “On nonlinear scattering of states which are close to a soliton”, Méthodes semi-classiques (Nantes, 1991), v. 2, Astérisque, 210, Société Mathématique de France, Paris, 1992, 49–63 | MR | Zbl

[34] V. S. Buslaev, G. S. Perelman, “Scattering for the nonlinear Schrödinger equation: states that are close to a soliton”, St. Petersburg Math. J., 4:6 (1993), 1111–1142 | MR | Zbl

[35] R. L. Pego, M. I. Weinstein, “On asymptotic stability of solitary waves”, Phys. Lett. A, 162:3 (1992), 263–268 | DOI

[36] R. L. Pego, M. I. Weinstein, “Asymptotic stability of solitary waves”, Comm. Math. Phys., 164:2 (1994), 305–349 | DOI | MR | Zbl

[37] M. I. Weinstein, “Modulational stability of ground states of nonlinear Schrödinger equations”, SIAM J. Math. Anal., 16:3 (1985), 472–491 | DOI | MR | Zbl

[38] H. Beresticky, P. L. Lions, “Nonlinear scalar field equations. I. Existence of a ground state”, Arch. Ration. Mech. Anal., 82:4 (1983), 313–345 ; “Nonlinear scalar field equations. II. Existence of infinitely many solutions”, 347–375 | DOI | MR | Zbl | DOI | MR | Zbl

[39] M. J. Esteban, V. Georgiev, E. Séré, “Stationary solutions of the Maxwell–Dirac and the Klein–Gordon–Dirac equations”, Calc. Var. Partial Differential Equations, 4:3 (1996), 265–281 | DOI | MR | Zbl

[40] M. Grillakis, J. Shatah, W. Strauss, “Stability theory of solitary waves in the presence of symmetry. I”, J. Funct. Anal., 74:1 (1987), 160–197 ; “Stability theory of solitary waves in the presence of symmetry. II”, 94:2 (1990), 308–348 | DOI | MR | Zbl | DOI | MR | Zbl

[41] V. I. Arnold, V. V. Kozlov, A. I. Neishtadt, Mathematical aspects of classical and celestial mechanics, Springer-Verlag, Berlin, 1997, xiv+291 pp. | MR | MR | Zbl | Zbl

[42] J. R. Miller, M. I. Weinstein, “Asymptotic stability of solitary waves for the regularized long-wave equation”, Comm. Pure Appl. Math., 49:4 (1996), 399–441 | 3.0.CO;2-7 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[43] A. I. Komech, “Linear partial differential equations with constant coefficients”, Elements of the modern theory of partial differential equations, Springer, Berlin, 1999, 121–256 | MR | MR | Zbl | Zbl

[44] B. Vaĭnberg, Asymptotic methods in equations of mathematical physics, Gordon Breach Science Publishers, New York, 1989, viii+498 pp. | MR | MR | Zbl | Zbl

[45] B. R. Vainberg, “Behavior of the solution of the Cauchy problem for a hyperbolic equation as $t\to \infty$”, Math. USSR-Sb., 7:4 (1969), 533–568 | DOI | MR | Zbl

[46] S. Agmon, “Spectral properties of Schrödinger operators and scattering theory”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 2:2 (1975), 151–218 | MR | Zbl

[47] A. Jensen, T. Kato, “Spectral properties of Schrödinger operators and time-decay of the wave functions”, Duke Math. J., 46:3 (1979), 583–611 | DOI | MR | Zbl

[48] B. R. Vainberg, “On the short wave asymptotic behavior of solutions of stationary problems and the asymptotic behavior as $t\to\infty$ of solutions of non-stationary problems”, Russian Math. Surveys, 30:2 (1975), 1–58 | DOI | MR | Zbl

[49] E. A. Kopylova, “Weighted energy decay for 3D wave equation”, Asymptot. Anal., 65:1-2 (2009), 1–16 | MR | Zbl