Mots-clés : soliton, modulation equations
@article{RM_2013_68_2_a1,
author = {V. M. Imaykin},
title = {Soliton asymptotics for systems of `field-particle' type},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {227--281},
year = {2013},
volume = {68},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2013_68_2_a1/}
}
V. M. Imaykin. Soliton asymptotics for systems of `field-particle' type. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 68 (2013) no. 2, pp. 227-281. http://geodesic.mathdoc.fr/item/RM_2013_68_2_a1/
[1] H. A. Lorentz, Versuch einer Theorie der electrischen und optischen Erscheinungen in bewegten Körpern, E. J. Brill, Leiden, 1895, 139 pp. | Zbl
[2] H. A. Lorentz, The theory of electrons and its applications to the phenomena of light and radiant heat, reprint of the 2nd ed., Dover Publications, Inc., New York, 1953, 343 pp. | Zbl
[3] J. C. Maxwell, “A dynamical theory of the electromagnetic field”, Philos. Trans. R. Soc. Lond., 155 (1865), 459–512 | DOI
[4] E. Wiechert, “Elektrodynamische Elementargesetze”, Arch. Néerl. (2), 5 (1900), 549–573 | Zbl
[5] M. Abraham, Theorie der Elektrizität, v. 2, Elektromagnetische Theorie der Strahlung, B. G. Teubner, Leipzig, 1905, 405 pp. | Zbl
[6] A. Komech, E. Kopylova, D. Stuart, “On asymptotic stability of solitons in a nonlinear Schrödinger equation”, Commun. Pure Appl. Anal., 11:3 (2012), 1063–1079 | DOI | MR
[7] A. I. Komech, E. A. Kopylova, H. Spohn, “Scattering of solitons for Dirac equation coupled to a particle”, J. Math. Anal. Appl., 383:2 (2011), 265–290 | DOI | MR | Zbl
[8] V. Imaikin, A. Komech, N. Mauser, “Soliton-type asymptotics for the coupled Maxwell–Lorentz equations”, Ann. Henri Poincaré, 5:6 (2004), 1117–1135 | DOI | MR | Zbl
[9] H. Spohn, Dynamics of charged particles and their radiation field, Cambridge Univ. Press, Cambridge, 2004, xvi+360 pp. | DOI | MR | Zbl
[10] V. S. Buslaev, G. S. Perel'man, “On the stability of solitary waves for nonlinear Schrödinger equations”, Nonlinear evolution equations, Amer. Math. Soc. Transl. Ser. 2, 164, Amer. Math. Soc., Providence, RI, 1995, 75–98 | MR | Zbl
[11] V. S. Buslaev, C. Sulem, “On asymptotic stability of solitary waves for nonlinear Schrödinger equations”, Ann. Inst. H. Poincaré Anal. Non Linéaire, 20:3 (2003), 419–475 | DOI | MR | Zbl
[12] S. Cuccagna, “Stabilization of solutions to nonlinear Schrödinger equations”, Comm. Pure Appl. Math., 54:9 (2001), 1110–1145 | DOI | MR | Zbl
[13] S. Cuccagna, “On asymptotic stability of ground states of NLS”, Rev. Math. Phys., 15:8 (2003), 877–903 | DOI | MR | Zbl
[14] A. Soffer, M. I. Weinstein, “Resonances, radiation damping and instability in Hamiltonian nonlinear wave equations”, Invent. Math., 136:1 (1999), 9–74 | DOI | MR | Zbl
[15] A. Soffer, M. I. Weinstein, “Selection of the ground state for nonlinear Schrödinger equations”, Rev. Math. Phys., 16:8 (2004), 977–1071 | DOI | MR | Zbl
[16] A. Komech, H. Spohn, M. Kunze, “Long-time asymptotics for a classical particle interacting with a scalar wave field”, Comm. Partial Differential Equations, 22:1-2 (1997), 307–335 | MR | Zbl
[17] A. I. Komech, H. Spohn, “Soliton-like asymptotics for a classical particle interacting with a scalar wave field”, Nonlinear Anal., 33:1 (1998), 13–24 | DOI | MR | Zbl
[18] A. Komech, M. Kunze, H. Spohn, “Effective dynamics for a mechanical particle coupled to a wave field”, Comm. Math. Phys., 203:1 (1999), 1–19 | DOI | MR | Zbl
[19] A. I. Komech, H. Spohn, “Long-time asymptotics for the coupled Maxwell–Lorentz equations”, Comm. Partial Differential Equations, 25:3-4 (2000), 559–584 | DOI | MR | Zbl
[20] V. Imaikin, A. Komech, P. Markowich, “Scattering of solitons of the Klein–Gordon equation coupled to a classical particle”, J. Math. Phys., 44:3 (2003), 1202–1217 | DOI | MR | Zbl
[21] V. Imaikin, A. Komech, H. Spohn, “Scattering theory for a particle coupled to a scalar field”, Discrete Contin. Dyn. Syst., 10:1-2 (2003), 387–396 | DOI | MR | Zbl
[22] V. Imaikin, A. Komech, H. Spohn, “Soliton-type asymptotics and scattering for a charge coupled to the Maxwell field”, Russ. J. Math. Phys., 9:4 (2002), 428–436 | MR | Zbl
[23] P. Germain, “Finite energy scattering for the Lorentz–Maxwell equation”, Ann. Henri Poincaré, 9:5 (2008), 927–943В | DOI | MR | Zbl
[24] V. Imaikin, A. Komech, H. Spohn, “Rotating charge coupled to the Maxwell field: scattering theory and adiabatic limit”, Monatsh. Math., 142:1-2 (2004), 143–156 | DOI | MR | Zbl
[25] V. Imaikin, A. Komech, B. Vainberg, “On scattering of solitons for the Klein–Gordon equation coupled to a particle”, Comm. Math. Phys., 268:2 (2006), 321–367 | DOI | MR | Zbl
[26] V. Imaikin, A. Komech, B. Vainberg, “On scattering of solitons for wave equation coupled to a particle”, Probability and mathematical physics, CRM Proc. Lecture Notes, 42, Amer. Math. Soc., Providence, RI, 2007, 249–271 | MR | Zbl
[27] V. Imaikin, A. Komech, B. Vainberg, “Scattering of solitons for coupled wave-particle equations”, J. Math. Anal. Appl., 389:2 (2012), 713–740 | DOI | MR | Zbl
[28] V. Imaikin, A. Komech, H. Spohn, “Scattering asymptotics for a charged particle coupled to the Maxwell field”, J. Math. Phys., 52:4 (2011), 042701, 33 pp. | DOI | MR
[29] A. Soffer, M. I. Weinstein, “Multichannel nonlinear scattering for nonintegrable systems”, Integrable systems and applications (Île d'Oléron, 1988), Lecture Notes in Phys., 342, Springer, Berlin, 1989, 312–327 | DOI | MR | Zbl
[30] A. Soffer, M. I. Weinstein, “Multichannel nonlinear scattering for nonintegrable equations”, Comm. Math. Phys., 133:1 (1990), 119–146 | DOI | MR | Zbl
[31] A. Soffer, M. I. Weinstein, “Multichannel nonlinear scattering for nonintegrable equations. II. The case of anisotropic potentials and data”, J. Differential Equations, 98:2 (1992), 376–390 | DOI | MR | Zbl
[32] A. Soffer, M. I. Weinstein, “Theory of nonlinear dispersive waves and selection of the ground state”, Phys. Rev. Lett., 95:21 (2005), 213905, 4 pp. | DOI
[33] V. S. Buslaev, G. S. Perel'man, “On nonlinear scattering of states which are close to a soliton”, Méthodes semi-classiques (Nantes, 1991), v. 2, Astérisque, 210, Société Mathématique de France, Paris, 1992, 49–63 | MR | Zbl
[34] V. S. Buslaev, G. S. Perelman, “Scattering for the nonlinear Schrödinger equation: states that are close to a soliton”, St. Petersburg Math. J., 4:6 (1993), 1111–1142 | MR | Zbl
[35] R. L. Pego, M. I. Weinstein, “On asymptotic stability of solitary waves”, Phys. Lett. A, 162:3 (1992), 263–268 | DOI
[36] R. L. Pego, M. I. Weinstein, “Asymptotic stability of solitary waves”, Comm. Math. Phys., 164:2 (1994), 305–349 | DOI | MR | Zbl
[37] M. I. Weinstein, “Modulational stability of ground states of nonlinear Schrödinger equations”, SIAM J. Math. Anal., 16:3 (1985), 472–491 | DOI | MR | Zbl
[38] H. Beresticky, P. L. Lions, “Nonlinear scalar field equations. I. Existence of a ground state”, Arch. Ration. Mech. Anal., 82:4 (1983), 313–345 ; “Nonlinear scalar field equations. II. Existence of infinitely many solutions”, 347–375 | DOI | MR | Zbl | DOI | MR | Zbl
[39] M. J. Esteban, V. Georgiev, E. Séré, “Stationary solutions of the Maxwell–Dirac and the Klein–Gordon–Dirac equations”, Calc. Var. Partial Differential Equations, 4:3 (1996), 265–281 | DOI | MR | Zbl
[40] M. Grillakis, J. Shatah, W. Strauss, “Stability theory of solitary waves in the presence of symmetry. I”, J. Funct. Anal., 74:1 (1987), 160–197 ; “Stability theory of solitary waves in the presence of symmetry. II”, 94:2 (1990), 308–348 | DOI | MR | Zbl | DOI | MR | Zbl
[41] V. I. Arnold, V. V. Kozlov, A. I. Neishtadt, Mathematical aspects of classical and celestial mechanics, Springer-Verlag, Berlin, 1997, xiv+291 pp. | MR | MR | Zbl | Zbl
[42] J. R. Miller, M. I. Weinstein, “Asymptotic stability of solitary waves for the regularized long-wave equation”, Comm. Pure Appl. Math., 49:4 (1996), 399–441 | 3.0.CO;2-7 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[43] A. I. Komech, “Linear partial differential equations with constant coefficients”, Elements of the modern theory of partial differential equations, Springer, Berlin, 1999, 121–256 | MR | MR | Zbl | Zbl
[44] B. Vaĭnberg, Asymptotic methods in equations of mathematical physics, Gordon Breach Science Publishers, New York, 1989, viii+498 pp. | MR | MR | Zbl | Zbl
[45] B. R. Vainberg, “Behavior of the solution of the Cauchy problem for a hyperbolic equation as $t\to \infty$”, Math. USSR-Sb., 7:4 (1969), 533–568 | DOI | MR | Zbl
[46] S. Agmon, “Spectral properties of Schrödinger operators and scattering theory”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 2:2 (1975), 151–218 | MR | Zbl
[47] A. Jensen, T. Kato, “Spectral properties of Schrödinger operators and time-decay of the wave functions”, Duke Math. J., 46:3 (1979), 583–611 | DOI | MR | Zbl
[48] B. R. Vainberg, “On the short wave asymptotic behavior of solutions of stationary problems and the asymptotic behavior as $t\to\infty$ of solutions of non-stationary problems”, Russian Math. Surveys, 30:2 (1975), 1–58 | DOI | MR | Zbl
[49] E. A. Kopylova, “Weighted energy decay for 3D wave equation”, Asymptot. Anal., 65:1-2 (2009), 1–16 | MR | Zbl