Counterexamples to regularity of Mañé projections in the theory of attractors
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 68 (2013) no. 2, pp. 199-226 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper is a study of global attractors of abstract semilinear parabolic equations and their embeddings in finite-dimensional manifolds. As is well known, a sufficient condition for the existence of smooth (at least $C^1$-smooth) finite-dimensional inertial manifolds containing a global attractor is the so-called spectral gap condition for the corresponding linear operator. There are also a number of examples showing that if there is no gap in the spectrum, then a $C^1$-smooth inertial manifold may not exist. On the other hand, since an attractor usually has finite fractal dimension, by Mañé's theorem it projects bijectively and Hölder-homeomorphically into a finite-dimensional generic plane if its dimension is large enough. It is shown here that if there are no gaps in the spectrum, then there exist attractors that cannot be embedded in any Lipschitz or even log-Lipschitz finite-dimensional manifold. Thus, if there are no gaps in the spectrum, then in the general case the inverse Mañé projection of the attractor cannot be expected to be Lipschitz or log-Lipschitz. Furthermore, examples of attractors with finite Hausdorff and infinite fractal dimension are constructed in the class of non-linearities of finite smoothness. Bibliography: 35 titles.
Keywords: global attractors, inertial manifolds, regularity.
Mots-clés : Mañé projections
@article{RM_2013_68_2_a0,
     author = {A. Eden and S. V. Zelik and V. K. Kalantarov},
     title = {Counterexamples to regularity of {Ma\~n\'e} projections in the theory of attractors},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {199--226},
     year = {2013},
     volume = {68},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2013_68_2_a0/}
}
TY  - JOUR
AU  - A. Eden
AU  - S. V. Zelik
AU  - V. K. Kalantarov
TI  - Counterexamples to regularity of Mañé projections in the theory of attractors
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2013
SP  - 199
EP  - 226
VL  - 68
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/RM_2013_68_2_a0/
LA  - en
ID  - RM_2013_68_2_a0
ER  - 
%0 Journal Article
%A A. Eden
%A S. V. Zelik
%A V. K. Kalantarov
%T Counterexamples to regularity of Mañé projections in the theory of attractors
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2013
%P 199-226
%V 68
%N 2
%U http://geodesic.mathdoc.fr/item/RM_2013_68_2_a0/
%G en
%F RM_2013_68_2_a0
A. Eden; S. V. Zelik; V. K. Kalantarov. Counterexamples to regularity of Mañé projections in the theory of attractors. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 68 (2013) no. 2, pp. 199-226. http://geodesic.mathdoc.fr/item/RM_2013_68_2_a0/

[1] S. Agmon, L. Nirenberg, “Lower bounds and uniqueness theorems for solutions of differential equations in a Hilbert space”, Comm. Pure Appl. Math., 20:1 (1967), 207–229 | DOI | MR | Zbl

[2] A. V. Babin, M. I. Vishik, Attractors of evolution equations, Stud. Math. Appl., 25, North-Holland Publishing Co., Amsterdam, 1992, x+532 pp. | MR | MR | Zbl | Zbl

[3] A. Ben-Artzi, A. Eden, C. Foias, B. Nicolaenko, “Hölder continuity for the inverse of Mañé's projection”, J. Math. Anal. Appl., 178:1 (1993), 22–29 | DOI | MR | Zbl

[4] V. V. Chepyzhov, M. I. Vishik, Attractors for equations of mathematical physics, Amer. Math. Soc. Colloq. Publ., 49, Amer. Math. Soc., Providence, RI, 2002, xii+363 pp. | MR | Zbl

[5] G. Dangelmayr, B. Fiedler, K. Kirchgässner, A. Mielke, Dynamics of nonlinear waves in dissipative systems: reduction, bifurcation and stability, Pitman Res. Notes Math. Ser., 352, Longman, Harlow, 1996, vi+277 pp. | MR | Zbl

[6] A. Eden, C. Foias, B. Nicolaenko, R. Temam, Exponential attractors for dissipative evolution equations, RAM Res. Appl. Math., 37, Masson, Paris; John Wiley Sons, Ltd., Chichester, 1994, viii+183 pp. | MR | Zbl

[7] C. Foias, E. Olson, “Finite fractal dimension and Hölder–Lipschitz parametrization”, Indiana Univ. Math. J., 45:3 (1996), 603–616 | DOI | MR | Zbl

[8] C. Foias, G. R. Sell, R. Temam, “Inertial manifolds for nonlinear evolutionary equations”, J. Differential Equations, 73:2 (1988), 309–353 | DOI | MR | Zbl

[9] C. Foias, G. R. Sell, E. S. Titi, “Exponential tracking and approximation of inertial manifolds for dissipative nonlinear equations”, J. Dynam. Differential Equations, 1:2 (1989), 199–244 | DOI | MR | Zbl

[10] A. Yu. Goritskii, “Dichotomy property of solutions of quasilinear equations in problems on inertial manifolds”, Sb. Math., 196:4 (2005), 485–511 | DOI | DOI | MR | Zbl

[11] Ph. Hartman, Ordinary differential equations, John Wiley Sons, Inc., New York–London–Sydney, 1964, xiv+612 pp. | MR | MR | Zbl | Zbl

[12] B. R. Hunt, V. Yu. Kaloshin, “Regularity of embeddings of infinite-dimensional fractal sets into finite-dimensional spaces”, Nonlinearity, 12:5 (1999), 1263–1275 | DOI | MR | Zbl

[13] L. Kapitanski, I. Rodnianski, “Shape and Morse theory of attractors”, Comm. Pure Appl. Math., 53:2 (2000), 218–242 | 3.0.CO;2-W class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[14] A. Katok, B. Hasselblatt, Introduction to the modern theory of dynamical systems, with a supplementary chapter by A. Katok and L. Mendoza, Encyclopedia Math. Appl., 54, Cambridge Univ. Press, Cambridge, 1995, xviii+802 pp. | MR | Zbl

[15] P. Kuchment, Floquet theory for partial differential equations, Oper. Theory Adv. Appl., 60, Birkhäuser Verlag, Basel, 1993, xiv+350 pp. | DOI | MR | Zbl

[16] I. Kukavica, “Log-log convexity and backward uniqueness”, Proc. Amer. Math. Soc., 135:8 (2007), 2415–2421 | DOI | MR | Zbl

[17] J. Mallet-Paret, G. R. Sell, “Inertial manifolds for reaction diffusion equations in higher space dimensions”, J. Amer. Math. Soc., 1:4 (1988), 805–866 | DOI | MR | Zbl

[18] J. Mallet-Paret, G. R. Sell, Zhou De Shao, “Obstructions to the existence of normally hyperbolic inertial manifolds”, Indiana Univ. Math. J., 42:3 (1993), 1027–1055 | DOI | MR | Zbl

[19] R. Mañé, “On the dimension of the compact invariant sets of certain nonlinear maps”, Dynamical systems and turbulence (Univ. of Warwick, Coventry, 1979/1980), Lecture Notes in Math., 898, Springer, Berlin–New York, 1981, 230–242 | DOI | MR | Zbl

[20] M. Miklavčič, “A sharp condition for existence of an inertial manifold”, J. Dynam. Differential Equations, 3:3 (1991), 437–456 | DOI | MR | Zbl

[21] A. Mielke, S. V. Zelik, “Infinite-dimensional trajectory attractors of elliptic boundary-value problems in cylindrical domains”, Russian Math. Surveys, 57:4 (2002), 753–784 | DOI | DOI | MR | Zbl

[22] A. Miranville, S. Zelik, “Attractors for dissipative partial differential equations in bounded and unbounded domains”, Handbook of differential equations: evolutionary equations, v. IV, Elsevier/North-Holland, Amsterdam, 2008, 103–200 | DOI | MR | Zbl

[23] H. Movahedi-Lankarani, “On the inverse of Mañé's projection”, Proc. Amer. Math. Soc., 116:2 (1992), 555–560 | DOI | MR | Zbl

[24] E. Olson, “Bouligand dimension and almost Lipschitz embeddings”, Pacific J. Math., 202:2 (2002), 459–474 | DOI | MR | Zbl

[25] E. J. Olson, J. C. Robinson, “Almost bi-Lipschitz embeddings and almost homogeneous sets”, Trans. Amer. Math. Soc., 362:1 (2010), 145–168 | DOI | MR | Zbl

[26] E. Pinto de Moura, J. C. Robinson, “Lipschitz deviation and embeddings of global attractors”, Nonlinearity, 23:7 (2010), 1695–1708 | DOI | MR | Zbl

[27] E. Pinto de Moura, J. C. Robinson, J. J. Sánchez-Gabites, “Embedding of global attractors and their dynamics”, Proc. Amer. Math. Soc., 139:10 (2011), 3497–3512 | DOI | MR | Zbl

[28] J. C. Robinson, Infinite-dimensional dynamical systems. An introduction to dissipative parabolic PDEs and the theory of global attractors, Cambridge Texts Appl. Math., Cambridge Univ. Press, Cambridge, 2001, xviii+461 pp. | MR | Zbl

[29] J. C. Robinson, Dimensions, embeddings, and attractors, Cambridge Tracts in Math., 186, Cambridge Univ. Press, Cambridge, 2011, xii+205 pp. | MR | Zbl

[30] A. V. Romanov, “Sharp estimates of the dimension of inertial manifolds for nonlinear parabolic equations”, Russian Acad. Sci. Izv. Math., 43:1 (1994), 31–47 | DOI | MR | Zbl

[31] A. V. Romanov, “Three counterexamples in the theory of inertial manifolds”, Math. Notes, 68:3 (2000), 378–385 | DOI | DOI | MR | Zbl

[32] A. V. Romanov, “Finite-dimensional limiting dynamics for dissipative parabolic equations”, Sb. Math., 191:3 (2000), 415–429 | DOI | DOI | MR | Zbl

[33] A. V. Romanov, “Finite-dimensional dynamics on attractors of non-linear parabolic equations”, Izv. Math., 65:5 (2001), 977–1001 | DOI | DOI | MR | Zbl

[34] A. Romanov, “Finite-dimensional limit dynamics of semilinear parabolic equations” (to appear)

[35] R. Temam, Infinite-dimensional dynamical systems in mechanics and physics, Appl. Math. Sci., 68, 2nd ed., Springer-Verlag, New York, 1997, xxii+648 pp. | DOI | MR | Zbl