Mots-clés : Mañé projections
@article{RM_2013_68_2_a0,
author = {A. Eden and S. V. Zelik and V. K. Kalantarov},
title = {Counterexamples to regularity of {Ma\~n\'e} projections in the theory of attractors},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {199--226},
year = {2013},
volume = {68},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2013_68_2_a0/}
}
TY - JOUR AU - A. Eden AU - S. V. Zelik AU - V. K. Kalantarov TI - Counterexamples to regularity of Mañé projections in the theory of attractors JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2013 SP - 199 EP - 226 VL - 68 IS - 2 UR - http://geodesic.mathdoc.fr/item/RM_2013_68_2_a0/ LA - en ID - RM_2013_68_2_a0 ER -
%0 Journal Article %A A. Eden %A S. V. Zelik %A V. K. Kalantarov %T Counterexamples to regularity of Mañé projections in the theory of attractors %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2013 %P 199-226 %V 68 %N 2 %U http://geodesic.mathdoc.fr/item/RM_2013_68_2_a0/ %G en %F RM_2013_68_2_a0
A. Eden; S. V. Zelik; V. K. Kalantarov. Counterexamples to regularity of Mañé projections in the theory of attractors. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 68 (2013) no. 2, pp. 199-226. http://geodesic.mathdoc.fr/item/RM_2013_68_2_a0/
[1] S. Agmon, L. Nirenberg, “Lower bounds and uniqueness theorems for solutions of differential equations in a Hilbert space”, Comm. Pure Appl. Math., 20:1 (1967), 207–229 | DOI | MR | Zbl
[2] A. V. Babin, M. I. Vishik, Attractors of evolution equations, Stud. Math. Appl., 25, North-Holland Publishing Co., Amsterdam, 1992, x+532 pp. | MR | MR | Zbl | Zbl
[3] A. Ben-Artzi, A. Eden, C. Foias, B. Nicolaenko, “Hölder continuity for the inverse of Mañé's projection”, J. Math. Anal. Appl., 178:1 (1993), 22–29 | DOI | MR | Zbl
[4] V. V. Chepyzhov, M. I. Vishik, Attractors for equations of mathematical physics, Amer. Math. Soc. Colloq. Publ., 49, Amer. Math. Soc., Providence, RI, 2002, xii+363 pp. | MR | Zbl
[5] G. Dangelmayr, B. Fiedler, K. Kirchgässner, A. Mielke, Dynamics of nonlinear waves in dissipative systems: reduction, bifurcation and stability, Pitman Res. Notes Math. Ser., 352, Longman, Harlow, 1996, vi+277 pp. | MR | Zbl
[6] A. Eden, C. Foias, B. Nicolaenko, R. Temam, Exponential attractors for dissipative evolution equations, RAM Res. Appl. Math., 37, Masson, Paris; John Wiley Sons, Ltd., Chichester, 1994, viii+183 pp. | MR | Zbl
[7] C. Foias, E. Olson, “Finite fractal dimension and Hölder–Lipschitz parametrization”, Indiana Univ. Math. J., 45:3 (1996), 603–616 | DOI | MR | Zbl
[8] C. Foias, G. R. Sell, R. Temam, “Inertial manifolds for nonlinear evolutionary equations”, J. Differential Equations, 73:2 (1988), 309–353 | DOI | MR | Zbl
[9] C. Foias, G. R. Sell, E. S. Titi, “Exponential tracking and approximation of inertial manifolds for dissipative nonlinear equations”, J. Dynam. Differential Equations, 1:2 (1989), 199–244 | DOI | MR | Zbl
[10] A. Yu. Goritskii, “Dichotomy property of solutions of quasilinear equations in problems on inertial manifolds”, Sb. Math., 196:4 (2005), 485–511 | DOI | DOI | MR | Zbl
[11] Ph. Hartman, Ordinary differential equations, John Wiley Sons, Inc., New York–London–Sydney, 1964, xiv+612 pp. | MR | MR | Zbl | Zbl
[12] B. R. Hunt, V. Yu. Kaloshin, “Regularity of embeddings of infinite-dimensional fractal sets into finite-dimensional spaces”, Nonlinearity, 12:5 (1999), 1263–1275 | DOI | MR | Zbl
[13] L. Kapitanski, I. Rodnianski, “Shape and Morse theory of attractors”, Comm. Pure Appl. Math., 53:2 (2000), 218–242 | 3.0.CO;2-W class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[14] A. Katok, B. Hasselblatt, Introduction to the modern theory of dynamical systems, with a supplementary chapter by A. Katok and L. Mendoza, Encyclopedia Math. Appl., 54, Cambridge Univ. Press, Cambridge, 1995, xviii+802 pp. | MR | Zbl
[15] P. Kuchment, Floquet theory for partial differential equations, Oper. Theory Adv. Appl., 60, Birkhäuser Verlag, Basel, 1993, xiv+350 pp. | DOI | MR | Zbl
[16] I. Kukavica, “Log-log convexity and backward uniqueness”, Proc. Amer. Math. Soc., 135:8 (2007), 2415–2421 | DOI | MR | Zbl
[17] J. Mallet-Paret, G. R. Sell, “Inertial manifolds for reaction diffusion equations in higher space dimensions”, J. Amer. Math. Soc., 1:4 (1988), 805–866 | DOI | MR | Zbl
[18] J. Mallet-Paret, G. R. Sell, Zhou De Shao, “Obstructions to the existence of normally hyperbolic inertial manifolds”, Indiana Univ. Math. J., 42:3 (1993), 1027–1055 | DOI | MR | Zbl
[19] R. Mañé, “On the dimension of the compact invariant sets of certain nonlinear maps”, Dynamical systems and turbulence (Univ. of Warwick, Coventry, 1979/1980), Lecture Notes in Math., 898, Springer, Berlin–New York, 1981, 230–242 | DOI | MR | Zbl
[20] M. Miklavčič, “A sharp condition for existence of an inertial manifold”, J. Dynam. Differential Equations, 3:3 (1991), 437–456 | DOI | MR | Zbl
[21] A. Mielke, S. V. Zelik, “Infinite-dimensional trajectory attractors of elliptic boundary-value problems in cylindrical domains”, Russian Math. Surveys, 57:4 (2002), 753–784 | DOI | DOI | MR | Zbl
[22] A. Miranville, S. Zelik, “Attractors for dissipative partial differential equations in bounded and unbounded domains”, Handbook of differential equations: evolutionary equations, v. IV, Elsevier/North-Holland, Amsterdam, 2008, 103–200 | DOI | MR | Zbl
[23] H. Movahedi-Lankarani, “On the inverse of Mañé's projection”, Proc. Amer. Math. Soc., 116:2 (1992), 555–560 | DOI | MR | Zbl
[24] E. Olson, “Bouligand dimension and almost Lipschitz embeddings”, Pacific J. Math., 202:2 (2002), 459–474 | DOI | MR | Zbl
[25] E. J. Olson, J. C. Robinson, “Almost bi-Lipschitz embeddings and almost homogeneous sets”, Trans. Amer. Math. Soc., 362:1 (2010), 145–168 | DOI | MR | Zbl
[26] E. Pinto de Moura, J. C. Robinson, “Lipschitz deviation and embeddings of global attractors”, Nonlinearity, 23:7 (2010), 1695–1708 | DOI | MR | Zbl
[27] E. Pinto de Moura, J. C. Robinson, J. J. Sánchez-Gabites, “Embedding of global attractors and their dynamics”, Proc. Amer. Math. Soc., 139:10 (2011), 3497–3512 | DOI | MR | Zbl
[28] J. C. Robinson, Infinite-dimensional dynamical systems. An introduction to dissipative parabolic PDEs and the theory of global attractors, Cambridge Texts Appl. Math., Cambridge Univ. Press, Cambridge, 2001, xviii+461 pp. | MR | Zbl
[29] J. C. Robinson, Dimensions, embeddings, and attractors, Cambridge Tracts in Math., 186, Cambridge Univ. Press, Cambridge, 2011, xii+205 pp. | MR | Zbl
[30] A. V. Romanov, “Sharp estimates of the dimension of inertial manifolds for nonlinear parabolic equations”, Russian Acad. Sci. Izv. Math., 43:1 (1994), 31–47 | DOI | MR | Zbl
[31] A. V. Romanov, “Three counterexamples in the theory of inertial manifolds”, Math. Notes, 68:3 (2000), 378–385 | DOI | DOI | MR | Zbl
[32] A. V. Romanov, “Finite-dimensional limiting dynamics for dissipative parabolic equations”, Sb. Math., 191:3 (2000), 415–429 | DOI | DOI | MR | Zbl
[33] A. V. Romanov, “Finite-dimensional dynamics on attractors of non-linear parabolic equations”, Izv. Math., 65:5 (2001), 977–1001 | DOI | DOI | MR | Zbl
[34] A. Romanov, “Finite-dimensional limit dynamics of semilinear parabolic equations” (to appear)
[35] R. Temam, Infinite-dimensional dynamical systems in mechanics and physics, Appl. Math. Sci., 68, 2nd ed., Springer-Verlag, New York, 1997, xxii+648 pp. | DOI | MR | Zbl