Counterexamples to regularity of Ma\~n\'e projections in the theory of attractors
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 68 (2013) no. 2, pp. 199-226

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is a study of global attractors of abstract semilinear parabolic equations and their embeddings in finite-dimensional manifolds. As is well known, a sufficient condition for the existence of smooth (at least $C^1$-smooth) finite-dimensional inertial manifolds containing a global attractor is the so-called spectral gap condition for the corresponding linear operator. There are also a number of examples showing that if there is no gap in the spectrum, then a $C^1$-smooth inertial manifold may not exist. On the other hand, since an attractor usually has finite fractal dimension, by Mañé's theorem it projects bijectively and Hölder-homeomorphically into a finite-dimensional generic plane if its dimension is large enough. It is shown here that if there are no gaps in the spectrum, then there exist attractors that cannot be embedded in any Lipschitz or even log-Lipschitz finite-dimensional manifold. Thus, if there are no gaps in the spectrum, then in the general case the inverse Mañé projection of the attractor cannot be expected to be Lipschitz or log-Lipschitz. Furthermore, examples of attractors with finite Hausdorff and infinite fractal dimension are constructed in the class of non-linearities of finite smoothness. Bibliography: 35 titles.
Keywords: global attractors, inertial manifolds, Mañé projections, regularity.
@article{RM_2013_68_2_a0,
     author = {A. Eden and S. V. Zelik and V. K. Kalantarov},
     title = {Counterexamples to regularity of {Ma\~n\'e} projections in the theory of attractors},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {199--226},
     publisher = {mathdoc},
     volume = {68},
     number = {2},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2013_68_2_a0/}
}
TY  - JOUR
AU  - A. Eden
AU  - S. V. Zelik
AU  - V. K. Kalantarov
TI  - Counterexamples to regularity of Ma\~n\'e projections in the theory of attractors
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2013
SP  - 199
EP  - 226
VL  - 68
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RM_2013_68_2_a0/
LA  - en
ID  - RM_2013_68_2_a0
ER  - 
%0 Journal Article
%A A. Eden
%A S. V. Zelik
%A V. K. Kalantarov
%T Counterexamples to regularity of Ma\~n\'e projections in the theory of attractors
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2013
%P 199-226
%V 68
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RM_2013_68_2_a0/
%G en
%F RM_2013_68_2_a0
A. Eden; S. V. Zelik; V. K. Kalantarov. Counterexamples to regularity of Ma\~n\'e projections in the theory of attractors. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 68 (2013) no. 2, pp. 199-226. http://geodesic.mathdoc.fr/item/RM_2013_68_2_a0/