Mots-clés : Teichmüller spaces
@article{RM_2012_67_6_a4,
author = {E. M. Chirka},
title = {Holomorphic motions and uniformization of holomorphic families of {Riemann} surfaces},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {1091--1165},
year = {2012},
volume = {67},
number = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2012_67_6_a4/}
}
TY - JOUR AU - E. M. Chirka TI - Holomorphic motions and uniformization of holomorphic families of Riemann surfaces JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2012 SP - 1091 EP - 1165 VL - 67 IS - 6 UR - http://geodesic.mathdoc.fr/item/RM_2012_67_6_a4/ LA - en ID - RM_2012_67_6_a4 ER -
E. M. Chirka. Holomorphic motions and uniformization of holomorphic families of Riemann surfaces. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 67 (2012) no. 6, pp. 1091-1165. http://geodesic.mathdoc.fr/item/RM_2012_67_6_a4/
[1] L. V. Ahlfors, Lectures on quasiconformal mappings, Van Nostrand Mathematical Studies, 10, D. Van Nostrand Co., Inc., Toronto–New York–London, 1966, v+146 pp. | MR | MR | Zbl | Zbl
[2] L. Ahlfors, L. Bers, “Riemann's mapping theorem for variable metrics”, Ann. of Math. (2), 72 (1960), 385–404 | DOI | MR | Zbl
[3] L. Ahlfors, G. Weill, “A uniqueness theorem for Beltrami equation”, Proc. Amer. Math. Soc., 13 (1962), 975–978 | DOI | MR | Zbl
[4] K. Astala, T. Ivaniec, G. Martin, Elliptic partial differential equations and quasiconformal mappings in the plane, Princeton Math. Ser., 48, Princeton Univ. Press, Princeton, NJ, 2009, xviii+677 pp. | MR | Zbl
[5] K. Astala, G. J. Martin, “Holomorphic motions”, Papers on analysis, Rep. Univ. Jyväskylä Dep. Math. Stat., 83, Univ. Jyväskylä, Jyväskylä, 2001, 27–40 | MR | Zbl
[6] M. Audin, J. Lafontaine (eds.), Holomorphic curves in symplectic geometry, Progr. Math., 117, Birkhäuser, Basel, 1994, xii+328 pp. | MR | Zbl
[7] L. Bers, “Simultaneous uniformization”, Bull. Amer. Math. Soc., 66 (1960), 94–97 | DOI | MR | Zbl
[8] L. Bers, “Holomorphic differentials as functions of moduli”, Bull. Amer. Math. Soc., 67 (1961), 206–210 | DOI | MR | Zbl
[9] L. Bers, “Uniformization, moduli and Kleinian groups”, Bull. London Math. Soc., 4 (1972), 257–300 | DOI | MR | MR | Zbl | Zbl
[10] L. Bers, “Fiber spaces over Teichmüller spaces”, Acta Math., 130:1 (1973), 89–126 | DOI | MR | Zbl
[11] L. Bers, “Holomorphic families of isomorphisms of Möbius groups”, J. Math. Kyoto Univ., 26:1 (1986), 73–76 | MR | Zbl
[12] L. Bers, H. Royden, “Holomorphic families of injections”, Acta Math., 157:3-4 (1986), 259–286 | DOI | MR | Zbl
[13] B. V. Boyarskii, “Gomeomorfnye resheniya sistem Beltrami”, Dokl. AN SSSR, 102 (1955), 661–664 | MR
[14] B. V. Boyarskii, “Obobschennye resheniya sistemy differentsialnykh uravnenii pervogo poryadka ellipticheskogo tipa s razryvnymi koeffitsientami”, Matem. sb., 43(85):4 (1957), 451–503 | MR | Zbl
[15] E. M. Chirka, “On the propagation of holomorphic motions”, Dokl. Math., 70:1 (2004), 516–519 | MR | Zbl
[16] E. M. Chirka, “Variations of Hartogs' theorem”, Proc. Steklov Inst. Math., 253 (2006), 212–220 | DOI | MR
[17] E. M. Chirka, “Prostranstva Teikhmyullera”, Lekts. kursy NOTs, 15, MIAN, M., 2010, 3–150 | DOI
[18] E. M. Chirka, “Neravenstva Kharnaka, rasstoyaniya Kobayashi i golomorfnye dvizheniya”, Tr. MIAN, 279 (2012), 206–216
[19] C. J. Earle, “On holomorphic families of pointed Riemann surfaces”, Bull. Amer. Math. Soc., 79 (1973), 163–166 | DOI | MR | Zbl
[20] C. J. Earle, R. S. Fowler, “Holomorphic families of open Riemann surfaces”, Math. Ann., 270:2 (1985), 249–273 | DOI | MR | Zbl
[21] C. J. Earle, R. S. Fowler, “A new characterization of infinite dimensional Teichmüller spaces”, Ann. Acad. Sci. Fenn. Ser. A I Math., 10 (1985), 149–153 | MR | Zbl
[22] C. Ehresmann, “Les connexions infinitésimales dans un espace fibré différentiable”, Colloque de topologie (espaces fibrés) (Bruxelles, 1950), Georges Thone, Liege; Masson et Cie., 1951, 29–55 | MR
[23] W. Fischer, H. Grauert, “Lokal-triviale Familien kompakter komplexer Mannigfaltigkeiten”, Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II, 1965 (1965), 89–94 | MR | Zbl
[24] F. Forstnerič, “Holomorphic hulls of sets fibered over the circle”, Indiana Univ. Math. J., 37 (1988), 869–889 | DOI | MR | Zbl
[25] R. C. Ganning, R. Narasimhan, “Immersion of open Riemann surfaces”, Math. Ann., 174 (1967), 103–108 | DOI | MR | Zbl
[26] F. Gardiner, Teichmüller theory and quadratic differentials, Pure Appl. Math. (N. Y.), John Wiley Sons, Inc., New York, 1987, xviii+236 pp. | MR | Zbl
[27] F. Gardiner, Y. Jiang, Z. Wang, “Holomorphic motions and related topics”, Geometry of Riemann surfaces, London Math. Soc. Lecture Note Ser., 368, Cambridge Univ. Press, Cambridge, 2010, 156–193 | MR | Zbl
[28] A. Glutsyuk, “Nonuniformizable skew cylinder. A counterexample to the simultaneous uniformization problem”, C. R. Acad. Sci. Paris Sér. I Math., 332:3 (2001), 209–214 | DOI | MR | Zbl
[29] A. Glutsyuk, “On simultaneous uniformization and local nonuniformizability”, C. R. Acad. Sci. Paris, 334 (2002), 489–494 | DOI | MR | Zbl
[30] P. Griffiths, “Complex-analytic priperties of certain Zariski open sets on algebraic varieties”, Ann. of Math. (2), 94:1 (1971), 21–51 | DOI | MR | Zbl
[31] M. Gromov, “Pseudo-holomorphic curves in symplectic manifolds”, Invent. Math., 82 (1985), 307–347 | DOI | Zbl
[32] A. Grothendieck, “Techniques de construction en géomètrie analytique”, Familles d'espaces complexes et fondements de la géométrie analytique, Séminaire H. Cartan, 13, 1960/61, No 7–17, Paris, 1962 | Zbl
[33] W. K. Hayman, P. B. Kennedy, Subharmonic functions, v. 1, London Math. Soc. Monographs, 9, Academic Press [Harcourt Brace Jovanovich, Publishers], London–New York, 1976, xvii+284 pp. | MR | MR | Zbl | Zbl
[34] J. Hubbard, “Sur la non-existence de sections analytiques à la courbe universelle de Teichmüller”, C. R. Acad. Sci. Paris, Ser. A-B, 274 (1972), A978–A979 | MR | Zbl
[35] Yu. S. Ilyashenko, “Fiberings into analytic curves”, Math. USSR-Sb., 17:4 (1972), 551–569 | DOI | MR | Zbl
[36] Yu. S. Ilyashenko, “Covering manifolds for analytic families of leaves of foliations by analytic curves”, Topol. Methods Nonlinear Anal., 11:2 (1998), 361–373 | MR | Zbl
[37] Yu. S. Il'yashenko, A. A. Shcherbakov, “Differential equations with real and complex time”, Proc. Steklov Inst. Math., 213 (1966), 104–114 | MR | Zbl | Zbl
[38] S. Kobayashi, Hyperbolic manifolds and holomorphic mappings, Pure Appl. Math., 2, Marcel Dekker, Inc., New York, 1970, ix+148 pp. | MR | Zbl | Zbl
[39] W. Kraus, “Über den Zusammenhang einiger Charakteristiken eines einfach zusammenhängen Bereichen mit der Kreisabbildungen”, Mitt. Math. Semin. Univ. Giessen, 21 (1932), 1–28 | Zbl
[40] M. Kuranishi, Deformations of compact complex manifolds, Séminaire de Mathématiques Supérieures, 39, Les Presses de l'Université de Montréal, Montréal, Que., 1971, 99 pp. | MR | Zbl
[41] O. Lehto, Univalent functions and Teichmüller spaces, Grad. Texts in Math., 109, Springer-Verlag, New York, 1987, xii+257 pp. | MR | Zbl
[42] O. Lehto, K. I. Virtanen, Quasikonforme Abbildungen, Springer-Verlag, Berlin–New York, 1965, xi+269 pp. | MR | Zbl
[43] S. Leng, Introduction to complex hyperbolic spaces, Spriger-Verlag, New York, 1987, viii+271 pp. | MR | Zbl
[44] F. Maitani, H. Yamaguchi, “Variation of Bergman metrics on Riemann surfaces”, Math. Ann., 330:3 (2004), 477–489 | DOI | MR | Zbl
[45] R. Mañé, P. Sad, D. Sullivan, “On the dynamics of rational maps”, Ann. Sci. École Norm. Sup. (4), 16:2 (1983), 193–217 | MR | Zbl
[46] G. Meigniez, “Submersions et fibrations localement triviales”, C. R. Acad. Sci. Paris Sér. I Math., 321:10 (1995), 1363–1365 | MR | Zbl
[47] S. Nag, The complex analytic theory of Teichmüller spaces, Canad. Math. Soc. Ser. Monogr. Adv. Texts, J. Wiley Sons, Inc., New York, 1988, xiv+427 pp. | MR | Zbl
[48] Z. Nehari, “The Schwarzian derivative and schlicht functions”, Bull. Amer. Math. Soc., 55 (1949), 545–551 | DOI | MR | Zbl
[49] T. Nishino, “Nouvelles recherches sur les fonctions entières de plusieurs variables complexes. II. Fonctions entières qui se réduisent à celles d'une variable”, J. Math. Kyoto Univ., 9 (1969), 221–274 | MR | Zbl
[50] S. Salamon, J. Viaclovsky, “Orthogonal complex structures on domains in $\mathbb R^4$”, Math. Ann., 343:4 (2009), 853–899 ; (2007), arXiv: 0704.3422 | DOI | MR | Zbl
[51] B. V. Shabat, Vvedenie v kompleksnyi analiz, v. 1, 2, 3-e izd., Nauka, M., 1985, 336, 464 pp. ; B. V. Shabat, Introduction to complex analysis. Part II. Functions of several variables, Transl. Math. Monogr., 110, Amer. Math. Soc., Providence, RI, 1992, x+371 pp. | MR | MR | Zbl | MR | Zbl
[52] A. A. Shcherbakov, “The exhaustion method for skew cylinders”, St. Petersburg Math. J., 12:5 (2001), 847–867 | MR | Zbl
[53] N. Shcherbina, “Pluripolar graphs are holomorphic”, Acta Math., 194:2 (2005), 203–216 | DOI | MR | Zbl
[54] A. I. Šnirel'man, “The degree of a quasi-ruled mapping and the nonlinear Hilbert problem”, Math. USSR-Sb., 18:3 (1972), 373–396 | DOI | MR | Zbl
[55] Y.-T. Siu, “Every Stein subvariety admits a Stein neighbourhood”, Invent. Math., 38:1 (1976/77), 89–100 | DOI | MR | Zbl
[56] Z. Slodkowski, “Holomorphic motions and polynomial hulls”, Proc. Amer. Math. Soc., 111:2 (1991), 347–355 | DOI | MR | Zbl
[57] Z. Slodkowski, “Extensions of holomorphic motions”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 22:2 (1995), 185–210 | MR | Zbl
[58] T. Sugawa, “The Bers projection and $\lambda$-lemma”, J. Math. Kyoto Univ., 32:4 (1992), 701–713 | MR | Zbl
[59] D. Sullivan, W. Thurston, “Extending holomorphic motions”, Acta Math., 157:1 (1986), 243–257 | DOI | MR | Zbl
[60] I. N. Vekua, Generalized analytic functions, Pergamon Press, London–Paris–Frankfurt; Addison-Wesley Publishing Co., Inc., Reading, MA, 1962, xxix+668 pp. | MR | MR | Zbl | Zbl
[61] H. Yamaguchi, “Variations de surfaces de Riemann”, C. R. Acad. Sci. Paris Sér. A, 286:23 (1978), A1121–A1124 | MR | Zbl
[62] H. Yamaguchi, “Variations of pseudoconvex domains over $\mathbb C^n$”, Michigan Math. J., 36:3 (1989), 415–457 | DOI | MR | Zbl