Inverse Dirichlet-to-Neumann problem for nodal curves
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 67 (2012) no. 6, pp. 1069-1089 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper proposes direct and inverse results for the Dirichlet and Dirichlet-to-Neumann problems for complex curves with nodal type singularities. As an application, it gives a method for reconstructing the conformal structure of a compact surface of $\mathbb R^3$ with constant scalar conductivity from electric current density measurements in a neighbourhood of one of its points. Bibliography: 23 titles.
Keywords: Riemann surface, nodal curve, Green function, inverse Dirichlet-to-Neumann problem.
Mots-clés : conformal structure
@article{RM_2012_67_6_a3,
     author = {G. Henkin and V. Michel},
     title = {Inverse {Dirichlet-to-Neumann} problem for nodal curves},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {1069--1089},
     year = {2012},
     volume = {67},
     number = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2012_67_6_a3/}
}
TY  - JOUR
AU  - G. Henkin
AU  - V. Michel
TI  - Inverse Dirichlet-to-Neumann problem for nodal curves
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2012
SP  - 1069
EP  - 1089
VL  - 67
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/RM_2012_67_6_a3/
LA  - en
ID  - RM_2012_67_6_a3
ER  - 
%0 Journal Article
%A G. Henkin
%A V. Michel
%T Inverse Dirichlet-to-Neumann problem for nodal curves
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2012
%P 1069-1089
%V 67
%N 6
%U http://geodesic.mathdoc.fr/item/RM_2012_67_6_a3/
%G en
%F RM_2012_67_6_a3
G. Henkin; V. Michel. Inverse Dirichlet-to-Neumann problem for nodal curves. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 67 (2012) no. 6, pp. 1069-1089. http://geodesic.mathdoc.fr/item/RM_2012_67_6_a3/

[1] L. V. Ahlfors, L. Sario, Riemann surfaces, Princeton Math. Ser., 26, Princeton Univ. Press, Princeton, NJ, 1960, xi+382 pp. | MR | Zbl

[2] M. I. Belishev, “The Calderon problem for two-dimensional manifolds by the BC-method”, SIAM J. Math. Anal., 35:1 (2003), 172–182 (electronic) | DOI | MR | Zbl

[3] M. I. Belishev, Y. V. Kurylev, “To the reconstruction of a Riemannian manifold via its spectral data (BC-method)”, Comm. Partial Differential Equations, 17:5-6 (1992), 767–804 | DOI | MR | Zbl

[4] P. Buser, “Inverse spectral geometry on Riemann surfaces”, Progress in inverse spectral geometry, Trends Math., Birkhäuser, Basel, 1997, 133–173 | MR | Zbl

[5] H. P. de Saint-Gervais, Uniformisation des surfaces de Riemann, Retour sur un théorème centenaire, ENS Éditions, Lyon, 2010, 544 pp. | MR | Zbl

[6] H. Federer, Geometric measure theory, Grundlehren Math. Wiss., 153, Springer-Verlag, New York, 1969, xiv+676 pp. | MR | MR | Zbl | Zbl

[7] A. M. Garsia, “An imbedding of closed Riemann surfaces in Euclidean space”, Comment. Math. Helv., 35 (1961), 93–110 | DOI | MR | Zbl

[8] I. M. Gel'fand, “Automorphic functions and the theory of representations”, Proc. Internat. Congress Math. (Stockholm, 1962), Inst. Mittag-Leffler, Djursholm, 1963, 74–85 | MR | Zbl

[9] A. A. Gonchar, “Poles of rows of the Padé table and meromorphic continuation of functions”, Math. USSR-Sb., 43:4 (1982), 527–546 | DOI | MR | Zbl

[10] A. Grothendieck, “The cohomology theory of abstract algebraic varieties”, Proc. Internat. Congress Math. (Edinburgh, 1958), Cambridge Univ. Press, New York, 1960, 103–118 | MR | Zbl

[11] J. Harris, I. Morrison, Moduli of curves, Grad. Texts in Math., 187, Springer-Verlag, New York, 1998, xiv+366 pp. | MR | Zbl

[12] R. Hartshorne, “Residues and duality”, Lecture notes of a seminar on the work of A. Grothendieck, given at Harvard 1963/64, with an appendix by P. Deligne, Lecture Notes in Math., 20, Springer-Verlag, Berlin–New York, 1966, vii+423 pp. | MR | Zbl

[13] R. Harvey, “Holomorphic chains and their boundaries”, Several complex variables (Williams Coll., Williamstown, MA, 1975), Proc. Sympos. Pure Math., 30, part 1, Amer. Math. Soc., Providence, RI, 1977, 309–382 | MR | Zbl

[14] F. R. Harvey, H. B. Lawson, Jr., “On boundaries of complex analytic varieties. I”, Ann. of Math. (2), 102:2 (1975), 233–290 | DOI | MR | Zbl

[15] G. Henkin, V. Michel, “On the explicit reconstruction of a Riemann surface from its Dirichlet–Neumann operator”, Geom. Funct. Anal., 17:1 (2007), 116–155 | DOI | MR | Zbl

[16] G. Henkin, V. Michel, Problème de plateau complexe feuilleté. Phénomènes de Hartogs–Severi et Bochner pour des feuilletages CR singuliers, 2011, arXiv: 1109.4300

[17] M. Lassas, G. Uhlmann, “On determining a Riemannian manifold from the Dirichlet-to-Neumann map”, Ann. Sci. École Norm. Sup. (4), 34:5 (2001), 771–787 | DOI | MR | Zbl

[18] M. Rosenlicht, “Generalized Jacobian varieties”, Ann. of Math. (2), 59 (1954), 505–530 | DOI | MR | Zbl

[19] R. A. Rüedy, “Embeddings of open Riemann surfaces”, Comment. Math. Helv., 46 (1971), 214–225 | DOI | MR | Zbl

[20] J.-P. Serre, Groupes algébriques et corps de classes, Publications de l'Institut de Mathématique de l'Université de Nancago, VII, Hermann, Paris, 1959, 202 pp. | MR | Zbl

[21] J. Sylvester, “An anisotropic inverse boundary value problem”, Comm. Pure Appl. Math., 43:2 (1990), 201–232 | DOI | MR | Zbl

[22] R. A. Walker, “Extended shockwave decomposability related to boundaries of holomorphic 1-chains within $\mathbb{CP}^2$”, Indiana Univ. Math. J., 57:3 (2008), 1133–1172 | DOI | MR | Zbl

[23] K.-W. Wiegmann, “Einbettungen komplexer Räume in Zahlenräume”, Invent. Math., 1 (1966), 229–242 | DOI | MR | Zbl