Inverse Dirichlet-to-Neumann problem for nodal curves
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 67 (2012) no. 6, pp. 1069-1089
Voir la notice de l'article provenant de la source Math-Net.Ru
This paper proposes direct and inverse results for the Dirichlet and Dirichlet-to-Neumann problems for complex curves with nodal type singularities. As an application, it gives a method for reconstructing the conformal structure of a compact surface of $\mathbb R^3$ with constant scalar conductivity from electric current density measurements in a neighbourhood of one of its points.
Bibliography: 23 titles.
Keywords:
Riemann surface, nodal curve, Green function, inverse Dirichlet-to-Neumann problem.
Mots-clés : conformal structure
Mots-clés : conformal structure
@article{RM_2012_67_6_a3,
author = {G. Henkin and V. Michel},
title = {Inverse {Dirichlet-to-Neumann} problem for nodal curves},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {1069--1089},
publisher = {mathdoc},
volume = {67},
number = {6},
year = {2012},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2012_67_6_a3/}
}
TY - JOUR AU - G. Henkin AU - V. Michel TI - Inverse Dirichlet-to-Neumann problem for nodal curves JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2012 SP - 1069 EP - 1089 VL - 67 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RM_2012_67_6_a3/ LA - en ID - RM_2012_67_6_a3 ER -
G. Henkin; V. Michel. Inverse Dirichlet-to-Neumann problem for nodal curves. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 67 (2012) no. 6, pp. 1069-1089. http://geodesic.mathdoc.fr/item/RM_2012_67_6_a3/