Inverse Dirichlet-to-Neumann problem for nodal curves
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 67 (2012) no. 6, pp. 1069-1089

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper proposes direct and inverse results for the Dirichlet and Dirichlet-to-Neumann problems for complex curves with nodal type singularities. As an application, it gives a method for reconstructing the conformal structure of a compact surface of $\mathbb R^3$ with constant scalar conductivity from electric current density measurements in a neighbourhood of one of its points. Bibliography: 23 titles.
Keywords: Riemann surface, nodal curve, Green function, inverse Dirichlet-to-Neumann problem.
Mots-clés : conformal structure
@article{RM_2012_67_6_a3,
     author = {G. Henkin and V. Michel},
     title = {Inverse {Dirichlet-to-Neumann} problem for nodal curves},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {1069--1089},
     publisher = {mathdoc},
     volume = {67},
     number = {6},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2012_67_6_a3/}
}
TY  - JOUR
AU  - G. Henkin
AU  - V. Michel
TI  - Inverse Dirichlet-to-Neumann problem for nodal curves
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2012
SP  - 1069
EP  - 1089
VL  - 67
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RM_2012_67_6_a3/
LA  - en
ID  - RM_2012_67_6_a3
ER  - 
%0 Journal Article
%A G. Henkin
%A V. Michel
%T Inverse Dirichlet-to-Neumann problem for nodal curves
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2012
%P 1069-1089
%V 67
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RM_2012_67_6_a3/
%G en
%F RM_2012_67_6_a3
G. Henkin; V. Michel. Inverse Dirichlet-to-Neumann problem for nodal curves. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 67 (2012) no. 6, pp. 1069-1089. http://geodesic.mathdoc.fr/item/RM_2012_67_6_a3/