@article{RM_2012_67_6_a2,
author = {M. Ya. Mazalov and P. V. Paramonov and K. Yu. Fedorovskiy},
title = {Conditions for $C^m$-approximability of functions by solutions of elliptic equations},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {1023--1068},
year = {2012},
volume = {67},
number = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2012_67_6_a2/}
}
TY - JOUR AU - M. Ya. Mazalov AU - P. V. Paramonov AU - K. Yu. Fedorovskiy TI - Conditions for $C^m$-approximability of functions by solutions of elliptic equations JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2012 SP - 1023 EP - 1068 VL - 67 IS - 6 UR - http://geodesic.mathdoc.fr/item/RM_2012_67_6_a2/ LA - en ID - RM_2012_67_6_a2 ER -
%0 Journal Article %A M. Ya. Mazalov %A P. V. Paramonov %A K. Yu. Fedorovskiy %T Conditions for $C^m$-approximability of functions by solutions of elliptic equations %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2012 %P 1023-1068 %V 67 %N 6 %U http://geodesic.mathdoc.fr/item/RM_2012_67_6_a2/ %G en %F RM_2012_67_6_a2
M. Ya. Mazalov; P. V. Paramonov; K. Yu. Fedorovskiy. Conditions for $C^m$-approximability of functions by solutions of elliptic equations. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 67 (2012) no. 6, pp. 1023-1068. http://geodesic.mathdoc.fr/item/RM_2012_67_6_a2/
[1] C. Runge, “Zur Theorie der eindeutigen analytischen Functionen”, Acta Math., 6:1 (1885), 229–244 | DOI | MR | Zbl
[2] A. G. Vitushkin, “The analytic capacity of sets in problems of approximation theory”, Russian Math. Surveys, 22:6 (1967), 139–200 | DOI | MR | Zbl
[3] T. W. Gamelin, Uniform algebras, Prentice-Hall, Inc., Englewood Cliffs, N. J., 1969, xiii+257 pp. | MR | Zbl | Zbl
[4] F. Hausdorff, Mengenlehre, Walter de Gruyter Co., Berlin, Leipzig, 1935, 306 pp. | MR | Zbl
[5] X. Tolsa, “The semiadditivity of continuous analytic capacity and the inner boundary conjecture”, Amer. J. Math., 126:3 (2004), 523–567 | DOI | MR | Zbl
[6] P. V. Paramonov, “Some new criteria for uniform approximability of functions by rational fractions”, Sb. Math., 186:9 (1995), 1325–1340 | DOI | MR | Zbl
[7] J. Verdera, “Removability, capacity and approximation”, Complex potential theory (Montreal, PQ, 1993), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 439, Kluwer Acad. Publ., Dordrecht, 1994, 419–473 | MR | Zbl
[8] P. V. Paramonov, “On harmonic approximation in the $C^1$-norm”, Math. USSR-Sb., 71:1 (1992), 183–207 | DOI | MR | Zbl
[9] E. P. Dolzhenko, “Ob approksimatsii na zamknutykh oblastyakh i na nul-mnozhestvakh”, Dokl. AN SSSR, 143 (1962), 771–774
[10] M. S. Melnikov, “Otsenka integrala Koshi po analiticheskoi krivoi”, Matem. sb., 71(113):4 (1966), 503–514 | MR | Zbl
[11] M. S. Melnikov, X. Tolsa, “Estimate of the Cauchy integral over Ahlfors regular curves”, Selected topics in complex analysis, Oper. Theory Adv. Appl., 158, Birkhäuser, Basel, 2005, 159–176 | DOI | MR | Zbl
[12] M. Ya. Mazalov, “Kriterii ravnomernoi priblizhaemosti garmonicheskimi funktsiyami na kompaktakh v $\mathbb R^3$”, Tr. MIAN, 279 (2012), 120–165
[13] M. V. Keldysh, “On the solvability and stability of the Dirichlet problem”, Amer. Math. Soc. Transl. Ser. 2, 51 (1966), 1–73 | MR | Zbl
[14] L. Carleson, Selected problems on exceptional sets, Van Nostrand Math. Stud., 13, D. Van Nostrand Co., Inc., Princeton–Toronto–London, 1967, v+151 pp. | MR | MR | Zbl | Zbl
[15] J. Verdera, M. S. Mel'nikov, P. V. Paramonov, “$C^1$-approximation and extension of subharmonic functions”, Sb. Math., 192:3-4 (2001), 515–535 | DOI | MR | Zbl
[16] A. G. O'Farrell, “Uniform approximation by harmonic functions”, Linear and complex analysis. Problem book 3, part 2, Lecture Notes in Math., 1574, Springer-Verlag, Berlin, 1994, 121 (problem 12.15) | DOI | MR | Zbl
[17] J. Deny, “Systèmes totaux de fonctions harmoniques”, Ann. Inst. Fourier (Grenoble), 1 (1949), 103–113 | DOI | MR
[18] M. V. Keldysh, “O razreshimosti i ustoichivosti zadachi Dirikhle”, Dokl. AN SSSR, 18:6 (1938), 315–318 | Zbl
[19] N. S. Landkof, Foundations of modern potential theory, Grundlehren Math. Wiss., 180, Springer-Verlag, New York–Heidelberg, 1972, x+424 pp. | MR | MR | Zbl | Zbl
[20] M. Labréche, De l'approximation harmonique uniforme, Thèse, Université de Montréal, 1982
[21] A. A. Gonchar, “O ravnomernom priblizhenii nepreryvnykh funktsii garmonicheskimi”, Izv. AN SSSR. Ser. matem., 27:6 (1963), 1239–1250 | MR | Zbl
[22] Yu. A. Lysenko, B. M. Pisarevskii, “Instability of harmonic capacity and approximations of continuous functions by harmonic functions”, Math. USSR-Sb., 5:1 (1968), 53–72 | DOI | MR | Zbl
[23] A. Debiard, B. Gaveau, “Potentiel fin et algèbre de fonctions analytiques. I”, J. Funct. Anal., 16:3 (1974), 289–304 | DOI | MR | Zbl
[24] P. M. Gauthier, S. Ladouceur, “Uniform approximation and fine potential theory”, J. Approx. Theory, 72:2 (1993), 138–140 | DOI | MR | Zbl
[25] A. G. O'Farrell, “Metaharmonic approximation in Lipschitz norms”, Proc. Roy. Irish Acad. Sect. A, 75:24 (1975), 317–330 | MR | Zbl
[26] J. Verdera, “$C^m$-approximation by solutions of elliptic equations, and Calderón–Zygmund operators”, Duke Math. J., 55:1 (1987), 157–187 | DOI | MR | Zbl
[27] G. David, Wavelets and singular integrals on curves and surfaces, Lecture Notes in Math., 1465, Springer-Verlag, Berlin, 1991, x+107 pp. | DOI | MR | Zbl
[28] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Math. Ser., 30, Princeton Univ. Press, Princeton, NJ, 1970, xiv+290 pp. | MR | MR | Zbl | Zbl
[29] L. Hörmander, The analysis of linear partial differential operators, v. I, Grundlehren Math. Wiss., 256, Distribution theory and Fourier analysis, Springer-Verlag, Berlin, 1983, ix+391 pp. | MR | MR | Zbl | Zbl
[30] J. Mateu, J. Orobitg, “Lipshitz approximation by harmonic functions and some applications to spectral synthesis”, Indiana Univ. Math. J., 39:3 (1990), 703–736 | DOI | MR | Zbl
[31] L. Carleson, “On the connection between Hausdorff measures and capacity”, Ark. Math., 3:5 (1958), 403–406 | DOI | MR | Zbl
[32] M. S. Mel'nikov, “Metric properties of analytic $\alpha$-capacity and approximation of analytic functions with a Hölder condition by rational functions”, Math. USSR-Sb., 8:1 (1969), 115–124 | DOI | MR | Zbl
[33] A. G. O'Farrell, “Estimates for capacities and approximation in Lipschitz norms”, J. Reine Angew. Math., 311/312 (1979), 101–115 | DOI | MR | Zbl
[34] A. G. Vitushkin, “Primer mnozhestv polozhitelnoi dliny, no nulevoi analiticheskoi emkosti”, Dokl. AN SSSR, 127:2 (1959), 246–249 | Zbl
[35] A. G. O'Farrell, “Rational approximation and weak analyticity. II”, Math. Ann., 281:1 (1988), 169–176 | DOI | MR | Zbl
[36] A. G. O'Farrell, “Rational approximation in Lipschitz norms. II”, Proc. Roy. Irish Acad. Sect. A, 79:11 (1979), 103–114 | MR | Zbl
[37] A. G. O'Farrell, “Hausdorff content and rational approximation in fractional Lipschitz norms”, Trans. Amer. Math. Soc., 228 (1977), 187–206 | DOI | MR | Zbl
[38] J. Verdera, “On $C^m$-rational approximation”, Proc. Amer. Math. Soc., 97:4 (1986), 621–625 | DOI | MR | Zbl
[39] Xuan Uy Nguyen, “An extremal problem on singular integrals”, Amer. J. Math., 102:2 (1980), 279–290 | DOI | MR | Zbl
[40] M. Ya. Mazalov, “Kriterii priblizhaemosti garmonicheskimi funktsiyami v prostranstvakh Lipshitsa”, Issledovaniya po lineinym operatoram i teorii funktsii. Vyp. 40, Zap. nauchn. sem. POMI, 401, POMI, SPb., 2012, 144–171
[41] A. Ruiz de Villa, X. Tolsa, “Characterization and semiadditivity of the $C^1$-harmonic capacity”, Trans. Amer. Math. Soc., 362:7 (2010), 3641–3675 | DOI | MR | Zbl
[42] J. Mateu, Yu. Netrusov, J. Orobitg, J. Verdera, “BMO and Lipschitz approximation by solutions of elliptic equations”, Ann. Inst. Fourier (Grenoble), 46:4 (1996), 1057–1081 | DOI | MR | Zbl
[43] J. L. Walsh, “The approximation of harmonic functions by harmonic polynomials and by harmonic rational functions”, Bull. Amer. Math. Soc., 35:4 (1929), 499–544 | DOI | MR | Zbl
[44] S. N. Mergelyan, “Uniform approximations to functions of a complex variable”, Amer. Math. Soc. Transl., 101, Amer. Math. Soc., Providence, RI, 1954, 294–391 | MR | MR | Zbl
[45] P. V. Paramonov, “$C^m$-approximations by harmonic polynomials on compact sets in $\mathbb R^n$”, Russian Acad. Sci. Sb. Math., 78:1 (1994), 231–251 | DOI | MR | Zbl
[46] P. V. Paramonov, “On approximation by harmonic polynomials in the $C^1$-norm on compact sets in $\mathbf R^2$”, Russian Acad. Sci. Izv. Math., 42:2 (1994), 321–331 | DOI | MR | Zbl
[47] X. Tolsa, “Painlevé's problem and the semiadditivity of analytic capacity”, Acta Math., 190:1 (2003), 105–149 | DOI | MR | Zbl
[48] H. Lebesgue, “Sur le problème de Dirichlet”, Palermo Rend., 24:1 (1907), 371–402 | DOI | Zbl
[49] E. H. Johnston, “The boundary modulus of continuity of harmonic functions”, Pacific J. Math., 90:1 (1980), 87–98 | MR | Zbl
[50] S. J. Gardiner, Harmonic approximation, London Math. Soc. Lecture Note Ser., 221, Cambridge Univ. Press, Cambridge, 1995, xiv+132 pp. | MR | Zbl
[51] N. I. Muskhelishvili, Some basic problems of the mathematical theory of elasticity. Fundamental equations, plane theory of elasticity, torsion and bending, P. Noordhoff, Ltd., Groningen, 1963, xxxi+718 pp. | MR | MR | Zbl
[52] M. B. Balk, Polyanalytic functions, Math. Res., 63, Akademie-Verlag, Berlin, 1991, 197 pp. | MR | Zbl
[53] E. P. Dolzhenko, “On boundary properties of the components of polyharmonic functions”, Math. Notes, 63:5-6 (1998), 724–735 | DOI | DOI | MR | Zbl
[54] E. P. Dolzhenko, V. I. Danchenko, “On the boundary properties of solutions to the generalized Cauchy–Riemann equation”, Proc. Steklov Inst. Math., 236 (2002), 132–142 | MR | Zbl
[55] V. I. Danchenko, E. P. Dolzhenko, “On boundary behavior of holomorphic components of bianalytic functions”, J. Math. Sci. (N. Y.), 126:6 (2005), 1586–1592 | DOI | MR | Zbl
[56] K. M. Rasulov, “On the solution of boundary value problems of Dirichlet problem type for polyanalytic functions”, Soviet Math. Dokl., 40:3 (1990), 643–647 | MR | Zbl
[57] M. Ya. Mazalov, “The Dirichlet problem for polyanalytic functions”, Sb. Math., 200:10 (2009), 1473–1493 | DOI | DOI | MR | Zbl
[58] A. G. O'Farrell, “Annihilators of rational modules”, J. Funct. Anal., 19:4 (1975), 373–389 | DOI | MR | Zbl
[59] J. L.-M. Wang, “Approximation by rational modules on nowhere dense sets”, Pacific J. Math., 80:1 (1979), 293–295 | MR | Zbl
[60] J. L.-M. Wang, “Rational modules and higher order Cauchy transforms”, Internat. J. Math. Math. Sci., 4:4 (1981), 661–665 | DOI | MR | Zbl
[61] J. L.-M. Wang, “Approximation by rational modules on boundary sets”, Pacific J. Math., 92:1 (1981), 237–239 | MR | Zbl
[62] J. L.-M. Wang, “A localization operator for rational modules”, Rocky Mountain J. Math., 19:4 (1989), 999–1002 | DOI | MR | Zbl
[63] T. Trent, J. L.-M. Wang, “Uniform approximation by rational modules on nowhere dense sets”, Proc. Amer. Math. Soc., 81:1 (1981), 62–64 | DOI | MR | Zbl
[64] T. Trent, J. L.-M. Wang, “The uniform closure of rational modules”, Bull. London Math. Soc., 13:5 (1981), 415–420 | DOI | MR | Zbl
[65] J. J. Carmona, “A necessary and sufficient condition for uniform approximation by certain rational modules”, Proc. Amer. Math. Soc., 86:3 (1982), 487–490 | DOI | MR | Zbl
[66] J. J. Carmona, “Mergelyan's approximation theorem for rational modules”, J. Approx. Theory, 44:2 (1985), 113–126 | DOI | MR | Zbl
[67] M. Ya. Mazalov, “Uniform approximations by bianalytic functions on arbitrary compact subsets of $ \mathbb C$”, Sb. Math., 195:5 (2004), 687–709 | DOI | DOI | MR | Zbl
[68] M. Ya. Mazalov, “A criterion for uniform approximability on arbitrary compact sets for solutions of elliptic equations”, Sb. Math., 199:1-2 (2008), 13–44 | DOI | DOI | MR | Zbl
[69] J. Verdera, “On the uniform approximation problem for the square of the Cauchy–Riemann operator”, Pacific J. Math., 159:2 (1993), 379–396 | MR | Zbl
[70] J. L.-M. Wang, “Approximation by rational modules in $\operatorname{Lip}\alpha$ norms”, Illinois J. Math., 26:4 (1982), 632–636 | MR | Zbl
[71] J. Verdera, “Approximation by rational modules in Sobolev and Lipschitz norms”, J. Funct. Anal., 58:3 (1984), 267–290 | DOI | MR | Zbl
[72] J. J. Carmona Doménech, “The closure in $\operatorname{Lip}_\alpha$ norms of rational modules with three generators”, Illinois J. Math., 29:3 (1985), 418–431 | MR | Zbl
[73] J. L.-M. Wang, “A Mergelyan–Vitushkin approximation theorem for rational modules”, J. Approx. Theory, 63:3 (1990), 368–374 | DOI | MR | Zbl
[74] J. L.-M. Wang, “Approximation by rational modules in $L^p$ and BMO”, J. Math. Anal. Appl., 160:1 (1991), 19–23 | DOI | MR | Zbl
[75] J. L.-M. Wang, “Rational modules and Cauchy transforms. II”, Proc. Amer. Math. Soc., 115:2 (1992), 405–408 | DOI | MR | Zbl
[76] V. V. Andrievskii, V. I. Belyi, V. V. Maimeskul, “Direct and inverse theorems for approximation of functions for rational modules in domains with quasiconformal boundary”, Math. Notes, 46:1-2 (1989), 581–588 | DOI | MR | Zbl
[77] K. Yu. Fedorovskiy, “Uniform $n$-analytic polynomial approximations of functions on rectifiable contours in $\mathbb C$”, Math. Notes, 59:3-4 (1996), 435–439 | DOI | DOI | MR | Zbl
[78] J. J. Carmona, P. V. Paramonov, K. Yu. Fedorovskiy, “On uniform approximation by polyanalytic polynomials and the Dirichlet problem for bianalytic functions”, Sb. Math., 193:9-10 (2002), 1469–1492 | DOI | DOI | MR | Zbl
[79] J. J. Carmona, K. Yu. Fedorovskiy, “Conformal maps and uniform approximation by polyanalytic functions”, Selected topics in complex analysis, Oper. Theory Adv. Appl., 158, Birkhäuser, Basel, 2005, 109–130 | DOI | MR | Zbl
[80] A. Boivin, P. M. Gauthier, P. V. Paramonov, “On uniform approximation by $n$-analytic functions on closed sets in $\mathbb C$”, Izv. Math., 68:3 (2004), 447–459 | DOI | DOI | MR | Zbl
[81] J. J. Carmona, K. Yu. Fedorovskiy, “On the dependence of uniform polyanalytic polynomial approximations on the order of polyanalyticity”, Math. Notes, 83:1-2 (2008), 31–36 | DOI | DOI | MR | Zbl
[82] J. J. Carmona, K. Yu. Fedorovskiy, “New conditions for uniform approximation by polyanalytic polynomials”, Tr. MIAN, 279 (2012), 227–241
[83] A. B. Zaitsev, “Uniform approximability of functions by polynomial solutions of second-order elliptic equations on compact plane sets”, Izv. Math., 68:6 (2004), 1143–1156 | DOI | DOI | MR | Zbl
[84] P. J. Davis, The Schwarz functions and its applications, Carus Math. Monogr., 17, Math. Assoc. Amer., Buffalo, NY, 1974, xi+228 pp. | MR | Zbl
[85] K. Yu. Fedorovskii, “On some properties and examples of Nevanlinna domains”, Proc. Steklov Inst. Math., 253 (2006), 186–194 | DOI | MR
[86] H. S. Shapiro, “Generalized analytic continuation” (Madras, 1967), Symposia on Theoretical Physics and Mathematics, 8, Plenum, New York, 1968, 151–163 | MR | Zbl
[87] R. G. Douglas, H. S. Shapiro, A. L. Shields, “Cyclic vectors and invariant subspaces for the backward shift operator”, Ann. Inst. Fourier (Grenoble), 20:1 (1970), 37–76 | DOI | MR | Zbl
[88] N. K. Nikol'skii, Treatise on the shift operator. Spectral function theory, Grundlehren Math. Wiss., 273, Springer-Verlag, Berlin, 1986, xii+491 pp. | MR | MR | Zbl | Zbl
[89] K. Dyakonov, D. Khavinson, “Smooth functions in star-invariant subspaces”, Recent advances in operator-related function theory, Contemp. Math., 393, Amer. Math. Soc., Providence, RI, 2006, 59–66 | DOI | MR | Zbl
[90] A. D. Baranov, K. Yu. Fedorovskiy, “Boundary regularity of Nevanlinna domains and univalent functions in model subspaces”, Sb. Math., 202:12 (2011), 1723–1740 | DOI | DOI | MR | Zbl
[91] J. B. Garnett, Bounded analytic functions, Pure Appl. Math., 96, Academic Press, Inc., [Harcourt Brace Jovanovich, Publishers], New York–London, 1981, xvi+467 pp. | MR | MR | Zbl
[92] M. Ya. Mazalov, “An example of a nonconstant bianalytic function vanishing everywhere on a nowhere analytic boundary”, Math. Notes, 62:4 (1997), 524–526 | DOI | DOI | MR | Zbl
[93] P. R Ahern, D. N. Clark, “On functions orthogonal to invariant subspaces”, Acta Math., 124 (1970), 191–204 | DOI | MR | Zbl
[94] E. P. Dolzhenko, “On the boundary smoothness of conformal mappings of domains with nonsmooth boundaries”, Dokl. Math., 76:1 (2007), 514–518 | DOI | MR | Zbl
[95] E. P. Dolzhenko, “Bounds for the moduli of continuity for conformal mappings of domains near their accessible boundary arcs”, Sb. Math., 202:12 (2011), 1775–1823 | DOI | DOI | MR | Zbl
[96] K. Yu. Fedorovskiy, “Approximation and boundary properties of polyanalytic functions”, Proc. Steklov Inst. Math., 235 (2001), 251–260 | MR | Zbl
[97] B. Gustafsson, H. S. Shapiro, “What is a quadrature domain?”, Quadrature domains and their application, Oper. Theory Adv. Appl., 156, Birkhäuser, Basel, 2005, 1–25 | DOI | MR | Zbl
[98] H. S. Shapiro, The Schwarz function and its generalization to higher dimensions, Univ. Arkansas Lecture Notes Math. Sci., 9, John Wiley Sons, Inc., New York, 1992, xiv+108 pp. | MR | Zbl
[99] D. Aharonov, H. S. Shapiro, “Domains in which analytic functions satisfy quadrature identities”, J. Anal. Math., 30 (1976), 39–73 | DOI | MR | Zbl
[100] M. Sakai, “Regularity of boundary having a Schwarz function”, Acta Math., 166:3-4 (1991), 263–297 | DOI | MR | Zbl
[101] K. Yu. Fedorovskiy, “$C^m$-approximation by polyanalytic polynomials on compact subsets of the complex plane”, Complex Anal. Oper. Theory, 5:3 (2011), 671–681 | DOI | MR
[102] P. Mattila, “Smooth maps, null-sets for integralgeometric measure and analytic capacity”, Ann. of Math. (2), 123:2 (1986), 303–309 | DOI | MR | Zbl
[103] M. S. Mel'nikov, “Analytic capacity: discrete approach and curvature of measure”, Sb. Math., 186:6 (1995), 827–846 | DOI | MR | Zbl
[104] M. S. Melnikov, J. Verdera, “A geometric proof of the $L^2$ boundedness of the Cauchy integral on Lipschitz graphs”, Internat. Math. Res. Notices, 1995, no. 7, 325–331 | DOI | MR | Zbl
[105] P. Mattila, M. S. Melnikov, J. Verdera, “The Cauchy integral, analytic capacity, and uniform rectifiability”, Ann. of Math. (2), 144:1 (1996), 127–136 | DOI | MR | Zbl
[106] G. David, P. Mattila, “Removable sets for Lipschitz harmonic functions in the plane”, Rev. Mat. Iberoamericana, 16:1 (2000), 137–215 | DOI | MR | Zbl
[107] G. David, “Unrectifiable $1$-sets have vanishing analytic capacity”, Rev. Mat. Iberoamericana, 14:2 (1998), 369–479 | DOI | MR | Zbl
[108] F. Nazarov, S. Treil, A. Volberg, “The $Tb$-theorem on non-homogeneous spaces”, Acta Math., 190:2 (2003), 151–239 | DOI | MR | Zbl
[109] P. Mattila, P. V. Paramonov, “On geometric properties of harmonic $\operatorname{Lip}_1$-capacity”, Pacific J. Math., 171:2 (1995), 469–491 | MR | Zbl
[110] Proc. Steklov Inst. Math., 235 (2001), 136–149 | MR | Zbl
[112] A. G. O'Farrell, “$T$-invariance”, Proc. Roy. Irish Acad. Sect. A, 92:2 (1992), 185–203 | MR | Zbl
[113] P. V. Paramonov, J. Verdera, “Approximation by solutions of elliptic equations on closed subsets of Euclidean space”, Math. Scand., 74:2 (1994), 249–259 | MR | Zbl
[114] A. Boivin, P. V. Paramonov, “Approximation by meromorphic and entire solutions of elliptic equations in Banach spaces of distributions”, Sb. Math., 189:4 (1998), 481–502 | DOI | DOI | MR | Zbl
[115] A. Boivin, P. V. Paramonov, “On radial limit functions for entire solutions of second order elliptic equations in $\mathbb R^2$”, Publ. Mat., 42:2 (1998), 509–519 | DOI | MR | Zbl
[116] A. Boivin, P. M. Gauthier, P. V. Paramonov, “Approximation on closed sets by analytic or meromorphic solutions of elliptic equations and applications”, Canad. J. Math., 54:5 (2002), 945–969 | DOI | MR | Zbl
[117] P. V. Paramonov, K. Yu. Fedorovskiy, “Uniform and $C^1$-approximability of functions on compact subsets of $\mathbb R^2$ by solutions of second-order elliptic equations”, Sb. Math., 190:2 (1999), 285–307 | DOI | DOI | MR | Zbl
[118] P. M. Gauthier, “Subharmonic extensions and approximations”, Canad. Math. Bull., 37:1 (1994), 46–53 | DOI | MR | Zbl
[119] M. S. Mel'nikov, P. V. Paramonov, “$C^1$-extension of subharmonic functions from closed Jordan domains in $\mathbb R^2$”, Izv. Math., 68:6 (2004), 1165–1178 | DOI | DOI | MR | Zbl
[120] P. V. Paramonov, “$C^1$-extension and $C^1$-reflection of subharmonic functions from Lyapunov–Dini domains into $\mathbb R^N$”, Sb. Math., 199:12 (2008), 1809–1846 | DOI | DOI | MR | Zbl
[121] A. Boivin, P. M. Gauthier, P. V. Paramonov, “$C^m$-subharmonic extension of Runge-type from closed to open subsets of $\mathbb R^N$”, Tr. MIAN, 279 (2012), 219–226