Conditions for $C^m$-approximability of functions by solutions of elliptic equations
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 67 (2012) no. 6, pp. 1023-1068

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is a survey of results obtained over the past 20–30 years in the qualitative theory of approximation of functions by holomorphic, harmonic, and polyanalytic functions (and, in particular, by corresponding polynomials) in the norms of Whitney-type spaces $C^m$ on compact subsets of Euclidean spaces. Bibliography: 120 titles.
Keywords: $C^m$-approximation by holomorphic, harmonic, and polyanalytic functions; $C^m$-analytic and $C^m$-harmonic capacity; $s$-dimensional Hausdorff content; Vitushkin localization operator; Nevanlinna domains; Dirichlet problem.
@article{RM_2012_67_6_a2,
     author = {M. Ya. Mazalov and P. V. Paramonov and K. Yu. Fedorovskiy},
     title = {Conditions for $C^m$-approximability of functions by solutions of elliptic equations},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {1023--1068},
     publisher = {mathdoc},
     volume = {67},
     number = {6},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2012_67_6_a2/}
}
TY  - JOUR
AU  - M. Ya. Mazalov
AU  - P. V. Paramonov
AU  - K. Yu. Fedorovskiy
TI  - Conditions for $C^m$-approximability of functions by solutions of elliptic equations
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2012
SP  - 1023
EP  - 1068
VL  - 67
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RM_2012_67_6_a2/
LA  - en
ID  - RM_2012_67_6_a2
ER  - 
%0 Journal Article
%A M. Ya. Mazalov
%A P. V. Paramonov
%A K. Yu. Fedorovskiy
%T Conditions for $C^m$-approximability of functions by solutions of elliptic equations
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2012
%P 1023-1068
%V 67
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RM_2012_67_6_a2/
%G en
%F RM_2012_67_6_a2
M. Ya. Mazalov; P. V. Paramonov; K. Yu. Fedorovskiy. Conditions for $C^m$-approximability of functions by solutions of elliptic equations. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 67 (2012) no. 6, pp. 1023-1068. http://geodesic.mathdoc.fr/item/RM_2012_67_6_a2/