Conditions for $C^m$-approximability of functions by solutions of elliptic equations
    
    
  
  
  
      
      
      
        
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 67 (2012) no. 6, pp. 1023-1068
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			This paper is a survey of results obtained over the past 20–30 years in the qualitative theory of approximation of functions by holomorphic, harmonic, and polyanalytic functions (and, in particular, by corresponding polynomials) in the norms of Whitney-type spaces $C^m$ on compact subsets of Euclidean spaces.
Bibliography: 120 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
$C^m$-approximation by holomorphic, harmonic, and polyanalytic functions; $C^m$-analytic and $C^m$-harmonic capacity; $s$-dimensional Hausdorff content; Vitushkin localization operator; Nevanlinna domains; Dirichlet problem.
                    
                    
                    
                  
                
                
                @article{RM_2012_67_6_a2,
     author = {M. Ya. Mazalov and P. V. Paramonov and K. Yu. Fedorovskiy},
     title = {Conditions for $C^m$-approximability of functions by solutions of elliptic equations},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {1023--1068},
     publisher = {mathdoc},
     volume = {67},
     number = {6},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2012_67_6_a2/}
}
                      
                      
                    TY - JOUR AU - M. Ya. Mazalov AU - P. V. Paramonov AU - K. Yu. Fedorovskiy TI - Conditions for $C^m$-approximability of functions by solutions of elliptic equations JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2012 SP - 1023 EP - 1068 VL - 67 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RM_2012_67_6_a2/ LA - en ID - RM_2012_67_6_a2 ER -
%0 Journal Article %A M. Ya. Mazalov %A P. V. Paramonov %A K. Yu. Fedorovskiy %T Conditions for $C^m$-approximability of functions by solutions of elliptic equations %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2012 %P 1023-1068 %V 67 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/RM_2012_67_6_a2/ %G en %F RM_2012_67_6_a2
M. Ya. Mazalov; P. V. Paramonov; K. Yu. Fedorovskiy. Conditions for $C^m$-approximability of functions by solutions of elliptic equations. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 67 (2012) no. 6, pp. 1023-1068. http://geodesic.mathdoc.fr/item/RM_2012_67_6_a2/
