Semigroups of analytic functions in analysis and applications
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 67 (2012) no. 6, pp. 975-1021 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This survey considers problems of analysis and certain related areas in which semigroups of analytic functions with respect to the operation of composition appear naturally. The main attention is devoted to holomorphic maps of a disk (or a half-plane) into itself. The role of fixed points is highlighted, both in the description of the structure of semigroups and in applications. Interconnections of the problem of fractional iteration with certain problems in the theory of random branching processes are pointed out, as well as with certain questions of non-commutative probability. The role of the infinitesimal description of semigroups of conformal maps in the development of the parametric method in the theory of univalent functions is shown. Bibliography: 94 titles.
Keywords: one-parameter semigroup, infinitesimal generator, evolution family, fractional iterates, Koenigs function, fixed points.
Mots-clés : evolution equation
@article{RM_2012_67_6_a1,
     author = {V. V. Goryainov},
     title = {Semigroups of analytic functions in analysis and applications},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {975--1021},
     year = {2012},
     volume = {67},
     number = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2012_67_6_a1/}
}
TY  - JOUR
AU  - V. V. Goryainov
TI  - Semigroups of analytic functions in analysis and applications
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2012
SP  - 975
EP  - 1021
VL  - 67
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/RM_2012_67_6_a1/
LA  - en
ID  - RM_2012_67_6_a1
ER  - 
%0 Journal Article
%A V. V. Goryainov
%T Semigroups of analytic functions in analysis and applications
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2012
%P 975-1021
%V 67
%N 6
%U http://geodesic.mathdoc.fr/item/RM_2012_67_6_a1/
%G en
%F RM_2012_67_6_a1
V. V. Goryainov. Semigroups of analytic functions in analysis and applications. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 67 (2012) no. 6, pp. 975-1021. http://geodesic.mathdoc.fr/item/RM_2012_67_6_a1/

[1] E. Schröeder, “Ueber iterirte Funktionen”, Math. Ann., 3:2 (1870), 296–322 | DOI

[2] G. Koenigs, “Recherches sur les intégrales de certaines équations fonctionelles”, Ann. Sci. École Norm. Sup. (3), 1, suppl. (1884), 1–41 | MR | Zbl

[3] K. Löwner, “Untersuchungen über schlichte konforme Abbildungen des Einheitskreises. I”, Math. Ann., 89:1-2 (1923), 103–121 | DOI | MR | Zbl

[4] L. Bieberbach, “Über die Koeffizienten derjenigen Potenzreihen, welche eine schlichte Abbildung des Einheitskreises vermitteln”, S. B. Preuss. Akad. Wiss., 138 (1916), 940–955 | Zbl

[5] L. de Branges, A proof of the Bieberbach conjecture, LOMI preprints, E–5–84, LOMI, Leningrad, 1984, 21 pp.

[6] L. de Branges, “A proof of the Bieberbach conjecture”, Acta Math., 154:1-2 (1985), 137–152 | DOI | MR | Zbl

[7] C. Loewner, “Some classes of functions defined by difference or differential inequalities”, Bull. Amer. Math. Soc., 56 (1950), 308–319 | DOI | MR | Zbl

[8] C. Loewner, “On some transformation semigroups”, J. Rational Mech. Anal., 5 (1956), 791–804 | MR | Zbl

[9] C. Loewner, “On some transformation semigroups invariant under Euclidean and non-Euclidean isometries”, J. Math. Mech., 8 (1959), 393–409 | MR | Zbl

[10] C. Loewner, “On semigroups in analysis and geometry”, Bull. Amer. Math. Soc., 70 (1964), 1–15 | DOI | MR | Zbl

[11] I. N. Baker, “Fractional iteration near a fixpoint of multiplier 1”, J. Austral. Math. Soc., 4:2 (1964), 143–148 | DOI | MR | Zbl

[12] S. Karlin, J. McGregor, “Embedding iterates of analytic functions with two fixed points into continuous groups”, Trans. Amer. Math. Soc., 132 (1968), 137–145 | DOI | MR | Zbl

[13] E. Jabotinsky, “Analytic iteration”, Trans. Amer. Math. Soc., 108 (1963), 457–477 | DOI | MR | Zbl

[14] G. Szekeres, “Regular iteration of real and complex functions”, Acta Math., 100:3-4 (1958), 203–258 | DOI | MR | Zbl

[15] M. Kuczma, Functional equations in a single variable, Monografie Matematyczne, 46, Państwowe Wydawnictwo Naukowe, Warszawa, 1968, 383 pp. (errata insert) | MR | Zbl

[16] M. Kuczma, B. Choczewski, R. Ger, Iterative functional equations, Encyclopedia Math. Appl., 32, Cambridge Univ. Press, Cambridge, 1990, xx+552 pp. | MR | Zbl

[17] J. Hadamard, “Two works on iteration and related questions”, Bull. Amer. Math. Soc., 50 (1944), 67–75 | DOI | MR | Zbl

[18] R. Nevanlinna, Eindeutige analytische Funktionen, Grundlehren Math. Wiss., XLVI, Springer-Verlag, Berlin–Göttingen–Heidelberg, 1953, x+379 pp. | MR | Zbl

[19] L. V. Ahlfors, Conformal invariants: topics in geometric function theory, McGraw-Hill Series in Higher Math., McGraw-Hill Book Co., New York–Düsseldorf–Johannesburg, 1973, ix+157 pp. | MR | Zbl

[20] A. Denjoy, “Sur l'itération des fonctions analytiques”, C. R. Acad. Sci. Paris Sér. A, 182 (1926), 255–257 | Zbl

[21] J. Wolff, “Sur l'itération des fonctions holomorphes dans une région, et dont les valeurs appartiennent à cette région”, C. R. Acad. Sci. Paris Sér. A, 182 (1926), 42–43, 200–201 | Zbl

[22] E. Berkson, H. Porta, “Semigroups of analytic functions and composition operators”, Michigan Math. J., 25:1 (1978), 101–115 | DOI | MR | Zbl

[23] V. V. Goryaĭnov, “Fractional iterates of functions analytic in the unit disk with given fixed points”, Math. USSR-Sb., 74:1 (1993), 29–46 | DOI | MR | Zbl | Zbl

[24] V. V. Goryaĭnov, O. S. Kudryavtseva, “One-parameter semigroups of analytic functions, fixed points and the Koenigs function”, Sb. Math., 202:7 (2011), 971–1000 | DOI | DOI | MR | Zbl

[25] F. Bracci, M. D. Contreras, S. Díaz-Madrigal, “Aleksandrov–Clark measures and semigroups of analytic functions in the unit disc”, Ann. Acad. Sci. Fenn. Math., 33:1 (2008), 231–240 | MR | Zbl

[26] A. G. Siskakis, “Semigroups of composition operators on spaces of analytic functions, a review”, Studies on composition operators (Laramie, WY, 1996), Contemp. Math., 213, Amer. Math. Soc., Providence, RI, 1998, 229–252 | DOI | MR | Zbl

[27] J. H. Shapiro, Composition operators and classical function theory, Universitext Tracts Math., Springer-Verlag, New York, 1993, xvi+223 pp. | MR | Zbl

[28] M. Elin, V. Goryainov, S. Reich, D. Shoikhet, “Fractional iteration and functional equations for analytic in the unit disk”, Comput. Methods Funct. Theory, 2:2 (2002), 353–366 | MR | Zbl

[29] G. Valiron, Fonctions analytiques, Presses Universitaires de France, Paris, 1954, 236 pp. | MR | Zbl

[30] Ch. Pommerenke, “On the iteration of analytic functions in a halfplane, I”, J. London Math. Soc. (2), 19:3 (1979), 439–447 | DOI | MR | Zbl

[31] I. N. Baker, Ch. Pommerenke, “On the iteration of analytic functions in a halfplane, II”, J. London Math. Soc. (2), 20:2 (1979), 255–258 | DOI | MR | Zbl

[32] M. D. Contreras, S. Díaz-Madrigal, Ch. Pommerenke, “Fixed points and boundary behaviour of the Koenigs function”, Ann. Acad. Sci. Fenn. Math., 29:2 (2004), 471–488 | MR | Zbl

[33] P. P. Kufarev, “Ob odnoparametricheskikh semeistvakh analiticheskikh funktsii”, Matem. sb., 13(55):1 (1943), 87–118

[34] Ch. Pommerenke, “Über die Subordination analytischer Funktionen”, J. Reine Angew. Math., 218 (1965), 159–173 | MR | Zbl

[35] Ch. Pommerenke, Univalent functions, with a chapter on quadratic differentials by G. Jensen, Studia Mathematica/Mathematische Lehrbücher, XXV, Vandenhoek Ruprecht, Göttingen, 1975, 376 pp. | MR | Zbl

[36] P. P. Kufarev, “Ob integralakh prosteishego differentsialnogo uravneniya s podvizhnoi polyarnoi osobennostyu pravoi chasti”, Uch. zap. Tomsk. un-ta, 1946, no. 1, 35–48

[37] D. E. Marshall, S. Rohde, “The Loewner differential equation and slit mappings”, J. Amer. Math. Soc., 18:4 (2005), 763–778 | DOI | MR | Zbl

[38] J. R. Lind, “A sharp condition for the Loewner equation to generate slits”, Ann. Acad. Sci. Fenn. Math., 30:1 (2005), 143–158 | MR | Zbl

[39] D. Prokhorov, A. Vasil'ev, “Singular and tangent slit solutions to the Löwner equation”, Analysis and mathematical physics, Trends Math., Birkhäuser, Basel, 2009, 455–463 | MR

[40] G. F. Lawler, Conformally invariant processes in the plane, Math. Surveys Monogr., 114, Amer. Math. Soc., Providence, RI, 2005, xii+242 pp. | MR | Zbl

[41] V. V. Goryainov, Polugruppy konformnykh otobrazhenii i ekstremalnye voprosy teorii odnolistnykh funktsii, Diss. ... dokt. fiz.-matem. nauk, Novosibirsk, 1986

[42] V. Ya. Gutlyanskij, “Parametric representation of univalent functions”, Soviet Math. Dokl., 11 (1970), 1273–1276 | MR | Zbl

[43] V. V. Goryainov, “O skhodimosti odnoparametricheskikh semeistv analiticheskikh funktsii”, Voprosy metricheskoi teorii otobrazhenii i ee primenenie, Naukova dumka, Kiev, 1978, 13–24 | MR

[44] V. V. Goryaĭnov, “Semigroups of conformal mappings”, Math. USSR-Sb., 57:2 (1987), 463–483 | DOI | MR | Zbl

[45] W. Rudin, Functional analysis, McGraw-Hill Series in Higher Math., McGraw-Hill Book Co., New York–Düsseldorf–Johannesburg, 1973, xiii+397 pp. | MR | MR | Zbl

[46] R. E. Edwards, Functional analysis. Theory and applications, Holt, Rinehart and Winston, New York–Toronto–London, 1965, xiii+781 pp. | MR | Zbl | Zbl

[47] V. V. Goryaĭnov, “On parametric representation of univalent functions”, Soviet Math. Dokl., 20 (1979), 378–381 | MR | Zbl

[48] G. Schober, Univalent functions – selected topics, Lectures Notes in Math., 478, Springer-Verlag, Berlin–New York, 1975, v+200 pp. | DOI | MR | Zbl

[49] V. V. Goryaĭnov, I. Ba, “Semigroup of conformal mappings of the upper half-plane into itself with hydrodynamic normalization at infinity”, Ukrainian Math. J., 44:10 (1992), 1209–1217 | MR | Zbl

[50] B. Gustafsson, A. Vasil'ev, Conformal and potential analysis in Hele–Shaw cells, Adv. Math. Fluid Mech., Birkhäuser Verlag, Basel, 2006, x+231 pp. | MR | Zbl

[51] Yu. E. Hohlov, D. V. Prokhorov, A. Yu. Vasil'ev, “On geometrical properties of free boundaries in the Hele–Shaw flows moving boundary problem”, Lobachevskii J. Math., 1 (1998), 3–12 (electronic) | MR | Zbl

[52] G. M. Goluzin, Geometric theory of functions of a complex variable, Trans. Math. Monogr., 26, Amer. Math. Soc., Providence, RI, 1969, 676 pp. | MR | Zbl | Zbl

[53] G. V. Kuz'mina, “Methods of the geometric theory of functions. I”, St. Petersburg Math. J., 9:3 (1998), 455–507 | MR | Zbl

[54] G. V. Kuz'mina, “Methods of the geometric theory of functions. II”, St. Petersburg Math. J., 9:5 (1998), 889–930 | MR | Zbl

[55] N. A. Lebedev, Printsip ploschadei v teorii odnolistnykh funktsii, Nauka, M., 1975, 336 pp. | MR | Zbl

[56] I. M. Milin, Univalent functions and orthonormal systems, Trans. Math. Monogr., 49, Amer. Math. Soc., Providence, RI, 1977, 202 pp. | MR | Zbl | Zbl

[57] M. Lavrentev, “K teorii konformnykh otobrazhenii”, Tr. Fiz.-matem. in-ta im. V. A. Steklova, 5, Izd-vo AN SSSR, L., 1934, 159–245 | Zbl

[58] M. Schiffer, “A method of variation within the family of simple functions”, Proc. London Math. Soc. (2), 44:1 (1938), 432–449 | DOI | MR | Zbl

[59] K. I. Babenko, “The theory of extremal problems for univalent functions of class $S$”, Proc. Steklov Inst. Math., 101 (1972), 1–327 | MR | MR | Zbl | Zbl

[60] J. Jenkins, Univalent functions and conformal mapping, Ergeb. Math. Grenzgeb. (N. F.), 18, Reihe: Moderne Funktionentheorie, Springer-Verlag, Berlin–Göttingen–Heidelberg, 1958, vi+169 pp. | MR | Zbl | Zbl

[61] I. P. Mityuk, “Printsip simmetrizatsii dlya mnogosvyaznykh oblastei i nekotorye ego primeneniya”, Ukr. matem. zhurn., 17:4 (1992), 46–54

[62] A. Baernstein, II, “Integral means, univalent functions and circular symmetrization”, Acta Math., 133:1 (1974), 139–169 | DOI | MR | Zbl

[63] W. K. Hayman, Multivalent functions, Cambridge Tracts in Math., 110, 2nd ed., Cambridge Univ. Press, Cambridge, 1994, xii+263 pp. | MR | Zbl

[64] V. N. Dubinin, Emkosti kondensatorov i simmetrizatsiya v geometricheskoi teorii funktsii kompleksnogo peremennogo, Dalnauka, Vladivostok, 2009

[65] G. M. Goluzin, “O teoremakh iskazheniya v teorii konformnykh otobrazhenii”, Matem. sb., 1(43):1 (1936), 127–135 | Zbl

[66] L. Bieberbach, “Aufstellung und Beweis des Drehungssatzes für schlichte konforme Abbildungen”, Math. Z., 4:3-4 (1919), 295–305 | DOI | MR | Zbl

[67] J. Basilewitsch, “Zum Koeffizientenproblem der schlichten Funktionen”, Matem. sb., 1(43):2 (1936), 211–228 | Zbl

[68] I. A. Aleksandrov, Parametricheskie prodolzheniya v teorii odnolistnykh funktsii, Nauka, M., 1976, 343 pp. | MR | Zbl

[69] P. L. Duren, Univalent functions, Grundlehren Math. Wiss., 259, Springer-Verlag, New York, 1983, xiv+382 pp. | MR | Zbl

[70] V. V. Goryaĭnov, “Parametric method in the theory of univalent functions”, Math. Notes, 27:4 (1980), 275–279 | DOI | MR | Zbl

[71] N. A. Lebedev, “Nekotorye otsenki dlya funktsii, regulyarnykh i odnolistnykh v kruge”, Vestn. Leningr. un-ta, 10:11 (1955), 3–21 | MR | Zbl

[72] V. I. Popov, “Oblast znachenii odnoi sistemy funktsionalov na klasse $S$”, Tr. Tomsk. un-ta, 182:3 (1965), 106–132 | MR | Zbl

[73] V. V. Goryainov, “Ob ekstremalyakh v otsenkakh funktsionalov, zavisyaschikh ot znachenii odnolistnoi funktsii i ee proizvodnoi”, Teoriya otobrazhenii i priblizhenie funktsii, Naukova dumka, Kiev, 1983, 38–49 | MR | Zbl

[74] V. V. Goryaǐnov, “A general uniqueness theorem and the geometry of extremal conformal mappings in problems of distortion and rotation”, Soviet Math. (Iz. VUZ), 30:10 (1986), 54–63 | MR | Zbl

[75] T. E. Harris, The theory of branching processes, Grundlehren Math. Wiss., 119, Springer-Verlag, Berlin; Prentice-Hall, Inc., 1963, xiv+230 pp. | MR | Zbl

[76] B. A. Sewastjanow, Verzweigungsprozesse, Mathematische Lehrbücher und Monographien. II. Abteilung: Mathematische Monographien, 34, Akademie-Verlag, Berlin, 1974, xi+326 pp. | MR | MR | Zbl | Zbl

[77] K. B. Athreya, P. E. Ney, Branching processes, Grundlehren Math. Wiss., 196, Springer-Verlag, New York–Heidelberg, 1972, xi+287 pp. | MR | Zbl

[78] S. Karlin, J. McGregor, “Embeddability of discrete time simple branching processes into continuous time branching processes”, Trans. Amer. Math. Soc., 132 (1968), 115–136 | DOI | MR | Zbl

[79] T. E. Harris, “Some mathematical models for branching processes”, Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, 1950, University of California Press, Berkeley and Los Angeles, 1951, 305–328 | MR | Zbl

[80] V. V. Goryaĭnov, “Fractional iteration of probability generating functions and imbedding discrete branching processes in continuous processes”, Russian Acad. Sci. Sb. Math., 79:1 (1994), 47–61 | DOI | MR | Zbl

[81] V. V. Goryaĭnov, “Semigroups of probability generating functions, and infinitely splittable random variables”, Theory Stoch. Process., 1(17):1 (1995), 2–9 | Zbl

[82] V. V. Goryaĭnov, “Koenigs function and fractional iterates of probability generating functions”, Sb. Math., 193:7 (2002), 1009–1025 | DOI | DOI | MR | Zbl

[83] A. V. Shipileva, “Estimates of the distribution of the extinction moment of a Markov branching process”, Theory Probab. Appl., 45:4 (2001), 695–698 | DOI | DOI | MR | Zbl

[84] V. V. Goryaĭnov, A. A. Polkovnikov, “On limit probability distributions for subcritical branching processes”, Theory Probab. Appl., 41:2 (1997), 352–359 | DOI | DOI | MR | Zbl

[85] V. Goryainov, “Some analytic properties of time inhomogeneous Markov branching processes”, Z. Angew. Math. Mech., 76, suppl. 3 (1996), 439–440 | Zbl

[86] A. N. Shiryaev, Veroyatnost, v 2-kh kn., MTsNMO, M., 2004, 924 pp.

[87] N. Muraki, “The five independences as natural products”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 6:3 (2003), 337–371 | DOI | MR | Zbl

[88] N. I. Akhiezer, I. M. Glazman, Theory of linear operators in Hilbert space, v. 1, 2, Monogr. Stud. Math., Pitman (Advanced Publishing Program), Boston–London, 1981, xxxii+312, 313–552 pp. | MR | MR | MR | Zbl | Zbl

[89] H. Maassen, “Addition of freely independent random variables”, J. Funct. Anal., 106:2 (1992), 409–438 | DOI | MR | Zbl

[90] N. Muraki, Monotonic convolution and monotone Lévy–Hinčin formula, Preprint, Iwate, Japan, 2000

[91] U. Franz and N. Muraki, “Markov structure of monotone Lévy processes”, Infinite dimensional harmonic analysis III, Proccedings of the Third German-Japanese Symposium (University of Tübingen, Germany, 15–20 September 2003), World Sci. Publ., Hackensack, NJ, 2005, 37–57 | DOI | MR | Zbl

[92] S. T. Belinschi, H. Bercovici, “Partially defined semigroups relative to multiplicative free convolution”, Int. Math. Res. Not., 2005:2 (2005), 65–101 | DOI | MR | Zbl

[93] H. Bercovici, “Multiplicative monotonic convolution”, Illinois J. Math., 49:3 (2005), 929–951 | MR | Zbl

[94] U. Franz, “Multiplicative monotone convolutions”, Quantum probability, Banach Center Publ., 73, Polish Acad. Sci., Warsaw, 2006, 153–166 | DOI | MR | Zbl