Mots-clés : evolution equation
@article{RM_2012_67_6_a1,
author = {V. V. Goryainov},
title = {Semigroups of analytic functions in analysis and applications},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {975--1021},
year = {2012},
volume = {67},
number = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2012_67_6_a1/}
}
V. V. Goryainov. Semigroups of analytic functions in analysis and applications. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 67 (2012) no. 6, pp. 975-1021. http://geodesic.mathdoc.fr/item/RM_2012_67_6_a1/
[1] E. Schröeder, “Ueber iterirte Funktionen”, Math. Ann., 3:2 (1870), 296–322 | DOI
[2] G. Koenigs, “Recherches sur les intégrales de certaines équations fonctionelles”, Ann. Sci. École Norm. Sup. (3), 1, suppl. (1884), 1–41 | MR | Zbl
[3] K. Löwner, “Untersuchungen über schlichte konforme Abbildungen des Einheitskreises. I”, Math. Ann., 89:1-2 (1923), 103–121 | DOI | MR | Zbl
[4] L. Bieberbach, “Über die Koeffizienten derjenigen Potenzreihen, welche eine schlichte Abbildung des Einheitskreises vermitteln”, S. B. Preuss. Akad. Wiss., 138 (1916), 940–955 | Zbl
[5] L. de Branges, A proof of the Bieberbach conjecture, LOMI preprints, E–5–84, LOMI, Leningrad, 1984, 21 pp.
[6] L. de Branges, “A proof of the Bieberbach conjecture”, Acta Math., 154:1-2 (1985), 137–152 | DOI | MR | Zbl
[7] C. Loewner, “Some classes of functions defined by difference or differential inequalities”, Bull. Amer. Math. Soc., 56 (1950), 308–319 | DOI | MR | Zbl
[8] C. Loewner, “On some transformation semigroups”, J. Rational Mech. Anal., 5 (1956), 791–804 | MR | Zbl
[9] C. Loewner, “On some transformation semigroups invariant under Euclidean and non-Euclidean isometries”, J. Math. Mech., 8 (1959), 393–409 | MR | Zbl
[10] C. Loewner, “On semigroups in analysis and geometry”, Bull. Amer. Math. Soc., 70 (1964), 1–15 | DOI | MR | Zbl
[11] I. N. Baker, “Fractional iteration near a fixpoint of multiplier 1”, J. Austral. Math. Soc., 4:2 (1964), 143–148 | DOI | MR | Zbl
[12] S. Karlin, J. McGregor, “Embedding iterates of analytic functions with two fixed points into continuous groups”, Trans. Amer. Math. Soc., 132 (1968), 137–145 | DOI | MR | Zbl
[13] E. Jabotinsky, “Analytic iteration”, Trans. Amer. Math. Soc., 108 (1963), 457–477 | DOI | MR | Zbl
[14] G. Szekeres, “Regular iteration of real and complex functions”, Acta Math., 100:3-4 (1958), 203–258 | DOI | MR | Zbl
[15] M. Kuczma, Functional equations in a single variable, Monografie Matematyczne, 46, Państwowe Wydawnictwo Naukowe, Warszawa, 1968, 383 pp. (errata insert) | MR | Zbl
[16] M. Kuczma, B. Choczewski, R. Ger, Iterative functional equations, Encyclopedia Math. Appl., 32, Cambridge Univ. Press, Cambridge, 1990, xx+552 pp. | MR | Zbl
[17] J. Hadamard, “Two works on iteration and related questions”, Bull. Amer. Math. Soc., 50 (1944), 67–75 | DOI | MR | Zbl
[18] R. Nevanlinna, Eindeutige analytische Funktionen, Grundlehren Math. Wiss., XLVI, Springer-Verlag, Berlin–Göttingen–Heidelberg, 1953, x+379 pp. | MR | Zbl
[19] L. V. Ahlfors, Conformal invariants: topics in geometric function theory, McGraw-Hill Series in Higher Math., McGraw-Hill Book Co., New York–Düsseldorf–Johannesburg, 1973, ix+157 pp. | MR | Zbl
[20] A. Denjoy, “Sur l'itération des fonctions analytiques”, C. R. Acad. Sci. Paris Sér. A, 182 (1926), 255–257 | Zbl
[21] J. Wolff, “Sur l'itération des fonctions holomorphes dans une région, et dont les valeurs appartiennent à cette région”, C. R. Acad. Sci. Paris Sér. A, 182 (1926), 42–43, 200–201 | Zbl
[22] E. Berkson, H. Porta, “Semigroups of analytic functions and composition operators”, Michigan Math. J., 25:1 (1978), 101–115 | DOI | MR | Zbl
[23] V. V. Goryaĭnov, “Fractional iterates of functions analytic in the unit disk with given fixed points”, Math. USSR-Sb., 74:1 (1993), 29–46 | DOI | MR | Zbl | Zbl
[24] V. V. Goryaĭnov, O. S. Kudryavtseva, “One-parameter semigroups of analytic functions, fixed points and the Koenigs function”, Sb. Math., 202:7 (2011), 971–1000 | DOI | DOI | MR | Zbl
[25] F. Bracci, M. D. Contreras, S. Díaz-Madrigal, “Aleksandrov–Clark measures and semigroups of analytic functions in the unit disc”, Ann. Acad. Sci. Fenn. Math., 33:1 (2008), 231–240 | MR | Zbl
[26] A. G. Siskakis, “Semigroups of composition operators on spaces of analytic functions, a review”, Studies on composition operators (Laramie, WY, 1996), Contemp. Math., 213, Amer. Math. Soc., Providence, RI, 1998, 229–252 | DOI | MR | Zbl
[27] J. H. Shapiro, Composition operators and classical function theory, Universitext Tracts Math., Springer-Verlag, New York, 1993, xvi+223 pp. | MR | Zbl
[28] M. Elin, V. Goryainov, S. Reich, D. Shoikhet, “Fractional iteration and functional equations for analytic in the unit disk”, Comput. Methods Funct. Theory, 2:2 (2002), 353–366 | MR | Zbl
[29] G. Valiron, Fonctions analytiques, Presses Universitaires de France, Paris, 1954, 236 pp. | MR | Zbl
[30] Ch. Pommerenke, “On the iteration of analytic functions in a halfplane, I”, J. London Math. Soc. (2), 19:3 (1979), 439–447 | DOI | MR | Zbl
[31] I. N. Baker, Ch. Pommerenke, “On the iteration of analytic functions in a halfplane, II”, J. London Math. Soc. (2), 20:2 (1979), 255–258 | DOI | MR | Zbl
[32] M. D. Contreras, S. Díaz-Madrigal, Ch. Pommerenke, “Fixed points and boundary behaviour of the Koenigs function”, Ann. Acad. Sci. Fenn. Math., 29:2 (2004), 471–488 | MR | Zbl
[33] P. P. Kufarev, “Ob odnoparametricheskikh semeistvakh analiticheskikh funktsii”, Matem. sb., 13(55):1 (1943), 87–118
[34] Ch. Pommerenke, “Über die Subordination analytischer Funktionen”, J. Reine Angew. Math., 218 (1965), 159–173 | MR | Zbl
[35] Ch. Pommerenke, Univalent functions, with a chapter on quadratic differentials by G. Jensen, Studia Mathematica/Mathematische Lehrbücher, XXV, Vandenhoek Ruprecht, Göttingen, 1975, 376 pp. | MR | Zbl
[36] P. P. Kufarev, “Ob integralakh prosteishego differentsialnogo uravneniya s podvizhnoi polyarnoi osobennostyu pravoi chasti”, Uch. zap. Tomsk. un-ta, 1946, no. 1, 35–48
[37] D. E. Marshall, S. Rohde, “The Loewner differential equation and slit mappings”, J. Amer. Math. Soc., 18:4 (2005), 763–778 | DOI | MR | Zbl
[38] J. R. Lind, “A sharp condition for the Loewner equation to generate slits”, Ann. Acad. Sci. Fenn. Math., 30:1 (2005), 143–158 | MR | Zbl
[39] D. Prokhorov, A. Vasil'ev, “Singular and tangent slit solutions to the Löwner equation”, Analysis and mathematical physics, Trends Math., Birkhäuser, Basel, 2009, 455–463 | MR
[40] G. F. Lawler, Conformally invariant processes in the plane, Math. Surveys Monogr., 114, Amer. Math. Soc., Providence, RI, 2005, xii+242 pp. | MR | Zbl
[41] V. V. Goryainov, Polugruppy konformnykh otobrazhenii i ekstremalnye voprosy teorii odnolistnykh funktsii, Diss. ... dokt. fiz.-matem. nauk, Novosibirsk, 1986
[42] V. Ya. Gutlyanskij, “Parametric representation of univalent functions”, Soviet Math. Dokl., 11 (1970), 1273–1276 | MR | Zbl
[43] V. V. Goryainov, “O skhodimosti odnoparametricheskikh semeistv analiticheskikh funktsii”, Voprosy metricheskoi teorii otobrazhenii i ee primenenie, Naukova dumka, Kiev, 1978, 13–24 | MR
[44] V. V. Goryaĭnov, “Semigroups of conformal mappings”, Math. USSR-Sb., 57:2 (1987), 463–483 | DOI | MR | Zbl
[45] W. Rudin, Functional analysis, McGraw-Hill Series in Higher Math., McGraw-Hill Book Co., New York–Düsseldorf–Johannesburg, 1973, xiii+397 pp. | MR | MR | Zbl
[46] R. E. Edwards, Functional analysis. Theory and applications, Holt, Rinehart and Winston, New York–Toronto–London, 1965, xiii+781 pp. | MR | Zbl | Zbl
[47] V. V. Goryaĭnov, “On parametric representation of univalent functions”, Soviet Math. Dokl., 20 (1979), 378–381 | MR | Zbl
[48] G. Schober, Univalent functions – selected topics, Lectures Notes in Math., 478, Springer-Verlag, Berlin–New York, 1975, v+200 pp. | DOI | MR | Zbl
[49] V. V. Goryaĭnov, I. Ba, “Semigroup of conformal mappings of the upper half-plane into itself with hydrodynamic normalization at infinity”, Ukrainian Math. J., 44:10 (1992), 1209–1217 | MR | Zbl
[50] B. Gustafsson, A. Vasil'ev, Conformal and potential analysis in Hele–Shaw cells, Adv. Math. Fluid Mech., Birkhäuser Verlag, Basel, 2006, x+231 pp. | MR | Zbl
[51] Yu. E. Hohlov, D. V. Prokhorov, A. Yu. Vasil'ev, “On geometrical properties of free boundaries in the Hele–Shaw flows moving boundary problem”, Lobachevskii J. Math., 1 (1998), 3–12 (electronic) | MR | Zbl
[52] G. M. Goluzin, Geometric theory of functions of a complex variable, Trans. Math. Monogr., 26, Amer. Math. Soc., Providence, RI, 1969, 676 pp. | MR | Zbl | Zbl
[53] G. V. Kuz'mina, “Methods of the geometric theory of functions. I”, St. Petersburg Math. J., 9:3 (1998), 455–507 | MR | Zbl
[54] G. V. Kuz'mina, “Methods of the geometric theory of functions. II”, St. Petersburg Math. J., 9:5 (1998), 889–930 | MR | Zbl
[55] N. A. Lebedev, Printsip ploschadei v teorii odnolistnykh funktsii, Nauka, M., 1975, 336 pp. | MR | Zbl
[56] I. M. Milin, Univalent functions and orthonormal systems, Trans. Math. Monogr., 49, Amer. Math. Soc., Providence, RI, 1977, 202 pp. | MR | Zbl | Zbl
[57] M. Lavrentev, “K teorii konformnykh otobrazhenii”, Tr. Fiz.-matem. in-ta im. V. A. Steklova, 5, Izd-vo AN SSSR, L., 1934, 159–245 | Zbl
[58] M. Schiffer, “A method of variation within the family of simple functions”, Proc. London Math. Soc. (2), 44:1 (1938), 432–449 | DOI | MR | Zbl
[59] K. I. Babenko, “The theory of extremal problems for univalent functions of class $S$”, Proc. Steklov Inst. Math., 101 (1972), 1–327 | MR | MR | Zbl | Zbl
[60] J. Jenkins, Univalent functions and conformal mapping, Ergeb. Math. Grenzgeb. (N. F.), 18, Reihe: Moderne Funktionentheorie, Springer-Verlag, Berlin–Göttingen–Heidelberg, 1958, vi+169 pp. | MR | Zbl | Zbl
[61] I. P. Mityuk, “Printsip simmetrizatsii dlya mnogosvyaznykh oblastei i nekotorye ego primeneniya”, Ukr. matem. zhurn., 17:4 (1992), 46–54
[62] A. Baernstein, II, “Integral means, univalent functions and circular symmetrization”, Acta Math., 133:1 (1974), 139–169 | DOI | MR | Zbl
[63] W. K. Hayman, Multivalent functions, Cambridge Tracts in Math., 110, 2nd ed., Cambridge Univ. Press, Cambridge, 1994, xii+263 pp. | MR | Zbl
[64] V. N. Dubinin, Emkosti kondensatorov i simmetrizatsiya v geometricheskoi teorii funktsii kompleksnogo peremennogo, Dalnauka, Vladivostok, 2009
[65] G. M. Goluzin, “O teoremakh iskazheniya v teorii konformnykh otobrazhenii”, Matem. sb., 1(43):1 (1936), 127–135 | Zbl
[66] L. Bieberbach, “Aufstellung und Beweis des Drehungssatzes für schlichte konforme Abbildungen”, Math. Z., 4:3-4 (1919), 295–305 | DOI | MR | Zbl
[67] J. Basilewitsch, “Zum Koeffizientenproblem der schlichten Funktionen”, Matem. sb., 1(43):2 (1936), 211–228 | Zbl
[68] I. A. Aleksandrov, Parametricheskie prodolzheniya v teorii odnolistnykh funktsii, Nauka, M., 1976, 343 pp. | MR | Zbl
[69] P. L. Duren, Univalent functions, Grundlehren Math. Wiss., 259, Springer-Verlag, New York, 1983, xiv+382 pp. | MR | Zbl
[70] V. V. Goryaĭnov, “Parametric method in the theory of univalent functions”, Math. Notes, 27:4 (1980), 275–279 | DOI | MR | Zbl
[71] N. A. Lebedev, “Nekotorye otsenki dlya funktsii, regulyarnykh i odnolistnykh v kruge”, Vestn. Leningr. un-ta, 10:11 (1955), 3–21 | MR | Zbl
[72] V. I. Popov, “Oblast znachenii odnoi sistemy funktsionalov na klasse $S$”, Tr. Tomsk. un-ta, 182:3 (1965), 106–132 | MR | Zbl
[73] V. V. Goryainov, “Ob ekstremalyakh v otsenkakh funktsionalov, zavisyaschikh ot znachenii odnolistnoi funktsii i ee proizvodnoi”, Teoriya otobrazhenii i priblizhenie funktsii, Naukova dumka, Kiev, 1983, 38–49 | MR | Zbl
[74] V. V. Goryaǐnov, “A general uniqueness theorem and the geometry of extremal conformal mappings in problems of distortion and rotation”, Soviet Math. (Iz. VUZ), 30:10 (1986), 54–63 | MR | Zbl
[75] T. E. Harris, The theory of branching processes, Grundlehren Math. Wiss., 119, Springer-Verlag, Berlin; Prentice-Hall, Inc., 1963, xiv+230 pp. | MR | Zbl
[76] B. A. Sewastjanow, Verzweigungsprozesse, Mathematische Lehrbücher und Monographien. II. Abteilung: Mathematische Monographien, 34, Akademie-Verlag, Berlin, 1974, xi+326 pp. | MR | MR | Zbl | Zbl
[77] K. B. Athreya, P. E. Ney, Branching processes, Grundlehren Math. Wiss., 196, Springer-Verlag, New York–Heidelberg, 1972, xi+287 pp. | MR | Zbl
[78] S. Karlin, J. McGregor, “Embeddability of discrete time simple branching processes into continuous time branching processes”, Trans. Amer. Math. Soc., 132 (1968), 115–136 | DOI | MR | Zbl
[79] T. E. Harris, “Some mathematical models for branching processes”, Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, 1950, University of California Press, Berkeley and Los Angeles, 1951, 305–328 | MR | Zbl
[80] V. V. Goryaĭnov, “Fractional iteration of probability generating functions and imbedding discrete branching processes in continuous processes”, Russian Acad. Sci. Sb. Math., 79:1 (1994), 47–61 | DOI | MR | Zbl
[81] V. V. Goryaĭnov, “Semigroups of probability generating functions, and infinitely splittable random variables”, Theory Stoch. Process., 1(17):1 (1995), 2–9 | Zbl
[82] V. V. Goryaĭnov, “Koenigs function and fractional iterates of probability generating functions”, Sb. Math., 193:7 (2002), 1009–1025 | DOI | DOI | MR | Zbl
[83] A. V. Shipileva, “Estimates of the distribution of the extinction moment of a Markov branching process”, Theory Probab. Appl., 45:4 (2001), 695–698 | DOI | DOI | MR | Zbl
[84] V. V. Goryaĭnov, A. A. Polkovnikov, “On limit probability distributions for subcritical branching processes”, Theory Probab. Appl., 41:2 (1997), 352–359 | DOI | DOI | MR | Zbl
[85] V. Goryainov, “Some analytic properties of time inhomogeneous Markov branching processes”, Z. Angew. Math. Mech., 76, suppl. 3 (1996), 439–440 | Zbl
[86] A. N. Shiryaev, Veroyatnost, v 2-kh kn., MTsNMO, M., 2004, 924 pp.
[87] N. Muraki, “The five independences as natural products”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 6:3 (2003), 337–371 | DOI | MR | Zbl
[88] N. I. Akhiezer, I. M. Glazman, Theory of linear operators in Hilbert space, v. 1, 2, Monogr. Stud. Math., Pitman (Advanced Publishing Program), Boston–London, 1981, xxxii+312, 313–552 pp. | MR | MR | MR | Zbl | Zbl
[89] H. Maassen, “Addition of freely independent random variables”, J. Funct. Anal., 106:2 (1992), 409–438 | DOI | MR | Zbl
[90] N. Muraki, Monotonic convolution and monotone Lévy–Hinčin formula, Preprint, Iwate, Japan, 2000
[91] U. Franz and N. Muraki, “Markov structure of monotone Lévy processes”, Infinite dimensional harmonic analysis III, Proccedings of the Third German-Japanese Symposium (University of Tübingen, Germany, 15–20 September 2003), World Sci. Publ., Hackensack, NJ, 2005, 37–57 | DOI | MR | Zbl
[92] S. T. Belinschi, H. Bercovici, “Partially defined semigroups relative to multiplicative free convolution”, Int. Math. Res. Not., 2005:2 (2005), 65–101 | DOI | MR | Zbl
[93] H. Bercovici, “Multiplicative monotonic convolution”, Illinois J. Math., 49:3 (2005), 929–951 | MR | Zbl
[94] U. Franz, “Multiplicative monotone convolutions”, Quantum probability, Banach Center Publ., 73, Polish Acad. Sci., Warsaw, 2006, 153–166 | DOI | MR | Zbl