Mots-clés : Atiyah–Hirzebruch spectral sequence, Hirzebruch genera.
@article{RM_2012_67_5_a1,
author = {V. M. Buchstaber},
title = {Complex cobordism and formal groups},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {891--950},
year = {2012},
volume = {67},
number = {5},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2012_67_5_a1/}
}
V. M. Buchstaber. Complex cobordism and formal groups. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 67 (2012) no. 5, pp. 891-950. http://geodesic.mathdoc.fr/item/RM_2012_67_5_a1/
[1] V. M. Bukhshtaber, A. S. Mishchenko, S. P. Novikov, “Formal groups and their role in the apparatus of algebraic topology”, Russian Math. Surveys, 26:2 (1971), 63–90 | DOI | MR | Zbl | Zbl
[2] S. P. Novikov, “Topology in the 20th century: a view from the inside”, Russian Math. Surveys, 59:5 (2004), 803–829 | DOI | DOI | MR | Zbl
[3] S. P. Novikov, Predislovie k kn.: Kobordizmy v Sovetskom Soyuze 1967–1979, Topologicheskaya biblioteka, 4, eds. S. P. Novikov, I. A. Taimanov, M.–Izhevsk, Institut kompyuternykh issledovanii, 2011, 9–13
[4] Kobordizmy v Sovetskom Soyuze 1967–1979, Topologicheskaya biblioteka, 4, eds. S. P. Novikov, I. A. Taimanov, M.–Izhevsk, Institut kompyuternykh issledovanii, 2011, 584 pp.
[5] S. P. Novikov, Topology, Encyclopaedia Math. Sci., 12, Springer, Berlin, 1996, 319 pp. | MR | MR | Zbl
[6] H. Poincaré, “Analysis situs”, J. Ecole Polytech. (2), 1 (1895), 1–121 ; Рђ. ПуанкарРμ, “Analysis situs”, Р�збранныРμ труды, С‚. II, Наука, Рњ., 1972, 457–807 | Zbl | MR | Zbl
[7] M. F. Atiyah, “Bordism and cobordism”, Proc. Cambridge Philos. Soc., 57:2 (1961), 200–208 | DOI | MR | Zbl
[8] R. Thom, “Quelques propriétés globales de variétés différentiables”, Comm. Math. Helv., 28 (1954), 17–86 | DOI | MR | Zbl
[9] J. Milnor, “On the cobordism ring $\Omega_*$ and a complex analogue. Part I”, Amer. J. Math., 82:3 (1960), 505–521 | DOI | MR | Zbl
[10] S. P. Novikov, “Some problems in the topology of manifolds connected with the theory of Thom spaces”, Soviet Math. Dokl., 1 (1960), 717–720 | MR | Zbl
[11] S. P. Novikov, “Gomotopicheskie svoistva kompleksov Toma”, Matem. sb., 57(99):4 (1962), 407–442 | MR | Zbl
[12] S. P. Novikov, “The methods of algebraic topology from the viewpoint of cobordism theory”, Math. USSR-Izv., 1:4 (1967), 827–913 | DOI | MR | Zbl | Zbl
[13] T. Katsura, Yu. Shimizu, K. Ueno, “Complex cobordism ring and conformal field theory over $\mathbb{Z}$”, Math. Ann., 291:3 (1991), 551–571 | DOI | MR | Zbl
[14] T. Coates, A. Givental, “Quantum cobordisms and formal group laws”, The unity of mathematics, Progr. Math., 244, Birkhäuser Boston, Boston, MA, 2006, 155–171 | DOI | MR | Zbl
[15] M. Levine, F. Morel, Algebraic cobordism, Springer Monogr. Math., Springer, Berlin, 2007, xii+244 pp. | DOI | MR | Zbl
[16] S. P. Novikov, “Various doublings of Hopf algebras. Operator algebras on quantum groups, complex cobordisms”, Russ. Math. Surveys, 47:5 (1992), 198–199 | DOI | MR | Zbl
[17] V. M. Buchstaber, “Semigroups of maps into groups, operator doubles, and complex cobordisms”, Topics in topology and mathematical physics, Amer. Math. Soc. Transl. Ser. 2, 170, Amer. Math. Soc., Providence, RI, 1995, 9–31 | MR | Zbl
[18] V. G. Drinfel'd, “Hopf algebras and the quantum Yang–Baxter equation”, Soviet Math. Dokl., 32 (1985), 256–258 | MR | Zbl
[19] C. Kassel, Quantum groups, Grad. Texts in Math., 155, Springer-Verlag, New York, 1995, xii+531 pp. | MR | Zbl
[20] M. A. Semenov-Tyan-Shanskii, “Poisson–Lie groups. The quantum duality principle and the twisted quantum double”, Theoret. and Math. Phys., 93:2 (1992), 1292–1307 | DOI | MR | Zbl
[21] M. Demazure, “Motifs des variétés algébriques”, Séminaire N. Bourbaki, 1969/70, Exp. No 365, 1971, 19–38 | Zbl
[22] P. S. Landweber, “Cobordism operations and Hopf algebras”, Trans. Amer. Math. Soc., 129 (1967), 94–110 | DOI | MR | Zbl
[23] S. P. Novikov, “Adams operators and fixed points”, Math. USSR-Izv., 2:6 (1968), 1193–1211 | DOI | MR | Zbl | Zbl
[24] V. M. Buhštaber, “Modules of differentials of the Atiyah–Hirzebruch spectral sequence. II”, Math. USSR-Sb., 12:1 (1970), 59–75 | DOI | MR | Zbl
[25] A. V. Shokurov, “Relations between the Chern numbers of quasicomplex manifolds”, Math. Notes, 26:1 (1979), 560–566 | DOI | MR | Zbl
[26] D. C. Ravenel, Complex cobordism and stable homotopy groups of spheres, 2nd ed., AMS Chelsea Publishing, Providence, RI, 2004, xix+395 pp. | MR | Zbl
[27] H. Miller, Kervaire invariant one [after M. A. Hill, M. J. Hopkins, and D. C. Ravenel], Séminaire N. Bourbaki, 2010/2011, Exp. No 1029, 63ème année, 2011, 30 pp.
[28] R. Stong, Notes on cobordism theory, Math. Notes, Univ. of Tokyo Press, Tokyo, 1968, v+354+lvi pp. | MR | MR | Zbl | Zbl
[29] F. Hirzebruch, “A Riemann–Roch theorem for differentiable manifolds”, Séminaire N. Bourbaki, 1958/59, 1959, 129–149 | MR | Zbl
[30] M. F. Atiyah, F. Hirzebruch, “Riemann–Roch theorems for differentiable manifolds”, Bull. Amer. Math. Soc., 65 (1959), 276–281 | DOI | MR | Zbl
[31] E. Dyer, “Relations between cohomology theories”, Colloquium on Algebraic Topology (Aarhus, 1962), Aarhus University, Aarhus, Denmark, 1962, 89–93 | Zbl
[32] I. Panin, “Oriented cohomology theories of algebraic varieties”, $K$-Theory, 30:3 (2003), 265–314 | DOI | MR | Zbl
[33] I. Panin, A. Smirnov, “Riemann–Roch theorems for oriented cohomology”, Axiomatic, enriched and motivic homotopy theory, NATO Sci. Ser. II Math. Phys. Chem., 131, Kluwer Acad. Publ., Dordrecht, 2004, 261–333 | DOI | MR | Zbl
[34] I. Panin, “Oriented cohomology theories of algebraic varieties. II. (After I. Panin and A. Smirnov.)”, Homology, Homotopy Appl., 11:1 (2009), 349–405 | MR | Zbl
[35] D. Quillen, “Elementary proofs of some results of cobordism theory using Steenrod operations”, Adv. in Math., 7 (1971), 29–56 | DOI | MR | Zbl
[36] V. Buchstaber, N. Ray, “Operations and quantum doubles in complex oriented cohomology theory”, Homology, Homotopy Appl., 1 (1999), 169–185 (electronic) | MR | Zbl
[37] V. M. Buhštaber, S. P. Novikov, “Formal groups, power systems and Adams operators”, Math. USSR-Sb., 13:1 (1971), 80–116 | DOI | MR | Zbl | Zbl
[38] V. M. Buhštaber, “The Chern–Dold character in cobordisms. I”, Math. USSR-Sb., 12:4 (1970), 573–594 | DOI | MR | Zbl | Zbl
[39] S. Ochanine, “Sur les genres multiplicatifs définis par des intégrales elliptiques”, Topology, 26:2 (1987), 143–151 | DOI | MR | Zbl
[40] F. Hirzebruch, T. Berger, R. Jung, Manifolds and modular forms, Aspects Math., E20, Friedr. Vieweg Sohn, Braunschweig, 1992, xii+211 pp. | MR | Zbl
[41] D. Quillen, “On the formal group laws of unoriented and complex cobordism theory”, Bull. Amer. Math. Soc., 75 (1969), 1293–1298 | DOI | MR | Zbl
[42] M. Lazard, “Sur les groupes de Lie formels à un paramètre”, Bull. Soc. Math. France, 83 (1955), 251–274 | MR | Zbl
[43] E. Friedlander, “An introduction to $K$-theory”, Some recent developments in algebraic $K$-theory, ICTP Lect. Notes, 23, Abdus Salam Int. Cent. Theoret. Phys., Trieste, 2008, 1–77 | MR | Zbl
[44] A. Dold, “Relations between ordinary and extraordinary homology”, Colloquium on Algebraic Topology (Aarhus, 1962), Aarhus University, Aarhus, Denmark, 1962, 2–9 | Zbl
[45] I. M. Kric̆ever, “Formal groups and the Atiyah–Hirzebruch formula”, Math. USSR-Izv., 8:6 (1974), 1271–1285 | DOI | MR | Zbl
[46] I. M. Krichever, “Generalized elliptic genera and Baker–Akhiezer functions”, Math. Notes, 47:2 (1990), 132–142 | DOI | MR | Zbl | Zbl
[47] J. F. Adams, “On Chern characters and the structure of the unitary group”, Proc. Cambridge Philos. Soc., 57:2 (1961), 189–199 | DOI | MR | Zbl
[48] J. F. Adams, “On the groups $J(X)$. IV”, Topology, 5 (1966), 21–71 | DOI | MR | Zbl
[49] I. M. James, “Reduced product spaces”, Ann. of Math. (2), 62 (1955), 170–197 | DOI | MR | Zbl
[50] T. Coates, A. Givental, “Quantum Riemann–Roch, Lefschetz and Serre”, Ann. of Math. (2), 165:1 (2007), 15–53 | DOI | MR | Zbl
[51] V. M. Buhštaber, “Modules of differentials of the Atiyah–Hirzebruch spectral sequence”, Math. USSR-Sb., 7:2 (1969), 299–313 | DOI | MR | Zbl
[52] M. F. Atiyah, F. Hirzebruch, “Analytic cycles on complex manifolds”, Topology, 1:1 (1962), 25–45 | DOI | MR | Zbl
[53] B. Totaro, “Torsion algebraic cycles and complex cobordism”, J. Amer. Math. Soc., 10:2 (1997), 467–493 | DOI | MR | Zbl
[54] B. I. Botvinnik, V. M. Buchstaber, S. P. Novikov, S. A. Yuzvinskii, “Algebraic aspects of the theory of multiplications in complex cobordism theory”, Russian Math. Surveys, 55:4 (2000), 613–633 | DOI | DOI | MR | Zbl
[55] E. H. Brown, F. P. Peterson, “A spectrum whose $Z_{p}$ cohomology is the algebra of reduced $p^\mathrm{th}$ powers”, Topology, 5 (1966), 149–154 | DOI | MR | Zbl
[56] V. M. Bukhshtaber, “Proektory v unitarnykh kobordizmakh, svyazannye s SU-teoriei”, UMN, 27:6(168) (1972), 231–232 | MR | Zbl
[57] V. M. Bukhshtaber, “Dvuznachnye formalnye gruppy. Nekotorye prilozheniya k kobordizmam”, UMN, 26:3(159) (1971), 195–196 | MR | Zbl
[58] V. M. Bukhshtaber, “Characteristic cobordism classes and topological applications of the theories of one-valued and two-valued formal groups”, J. Soviet Math., 11:6 (1979), 815–921 | DOI | MR | Zbl | Zbl
[59] V. L. Ginzburg, V. Guillemin, Y. Karshon, Moment maps, cobordisms, and Hamiltonian group actions, Math. Surveys Monogr., 98, Amer. Math. Soc., Providence, RI, 2002, viii+350 pp. | MR | Zbl
[60] V. V. Vershinin, “The ring of symplectic cobordisms”, Proc. Steklov Inst. Math., 154 (1985), 53–56 | MR | Zbl | Zbl
[61] V. M. Buchstaber, A. N. Kholodov, “Topological constructions connected with many-valued formal groups”, Math. USSR-Izv., 20:1 (1983), 1–25 | DOI | MR | Zbl | Zbl
[62] V. M. Buchstaber, “$n$-valued groups: theory and applications”, Mosc. Math. J., 6:1 (2006), 57–84 | MR | Zbl
[63] V. M. Bukhshtaber, A. V. Shokurov, “The Landweber–Novikov algebra and formal vector fields on the line”, Funct. Anal. Appl., 12:3 (1978), 159–168 | DOI | MR | Zbl
[64] P. E. Conner, E. E. Floyd, Differentiable periodic maps, Ergeb. Math. Grenzgeb., 33, Academic Press, New York; Springer-Verlag, Berlin–Goẗtingen–Heidelberg, 1964, vii+148 pp. | MR | Zbl | Zbl
[65] A. S. Mishchenko, “Manifolds with the action of the group $Z_p$ and fixed points”, Math. Notes, 4:4 (1968), 721–724 | DOI | MR | Zbl | Zbl
[66] A. S. Mishchenko, “Bordisms with the action of the group $Z_p$ and fixed points”, Math. USSR-Sb., 9:3 (1969), 291–296 | DOI | MR | Zbl
[67] G. G. Kasparov, “Invariants of classical lens manifolds in cobordism theory”, Math. USSR-Izv., 3:4 (1969), 695–705 | DOI | MR | Zbl | Zbl
[68] I. M. Krichever, “Actions of finite cyclic groups on quasicomplex manifolds”, Math. USSR-Sb., 19:2 (1973), 305–319 | DOI | MR | Zbl | Zbl
[69] S. M. Gusein-Zade, I. M. Krichever, “O formulakh dlya nepodvizhnykh tochek deistviya gruppy $Z_p$”, UMN, 28:1(169) (1973), 237–238 | MR | Zbl
[70] I. M. Krichever, “Remark on the paper ‘Actions of finite cyclic groups on quasicomplex manifolds’ ”, Math. USSR-Sb., 24:1 (1974), 145–146 | DOI | MR | Zbl
[71] S. M. Gusein-Zade, “Nepodvizhnye tochki $U$-deistvii okruzhnosti”, UMN, 26:4(160) (1971), 250 | MR | Zbl
[72] S. M. Gusein-Zade, “On the action of a circle on manifolds”, Math. Notes, 10:5 (1971), 731–734 | DOI | MR | Zbl | Zbl
[73] S. M. Gusein-Zade, “$U$-actions of a circle and fixed points”, Math. USSR-Izv., 5:5 (1971), 1127–1143 | DOI | MR | Zbl | Zbl
[74] I. M. Krichever, “Ekvivariantnye rody Khirtsebrukha. Formula Atya–Khirtsebrukha”, UMN, 30:1(181) (1975), 243–244 | MR | Zbl
[75] T. E. Panov, “Calculation of Hirzebruch genera for manifolds acted on by the group $\mathbf Z/p$ via invariants of the action”, Izv. Math., 62:3 (1998), 515–548 | DOI | DOI | MR | Zbl
[76] F. Hirzebruch, Neue topologische Methoden in der algebraischen Geometrie, Ergeb. Math. Grenzgeb., 9, Springer-Verlag, Berlin–Göttingen–Heidelberg, 1956, viii+165 pp. | MR | Zbl | Zbl
[77] V. M. Buchstaber, N. Ray, “Universal equivariant genus and Krichever's formula”, Russian Math. Surveys, 62:1 (2007), 178–180 | DOI | DOI | MR | Zbl
[78] T. E. Panov, “Combinatorial formulae for the $\chi_y$-genus of a multioriented quasitoric manifold”, Russian Math. Surveys, 54:5 (1999), 1037–1039 | DOI | DOI | MR | Zbl
[79] T. E. Panov, “Hirzebruch genera of manifolds with torus action”, Izv. Math., 65:3 (2001), 543–556 | DOI | DOI | MR | Zbl
[80] V. M. Bukhshtaber, T. E. Panov, Toricheskie deistviya v topologii i kombinatorike, MTsNMO, M., 2004, 272 pp. | MR | Zbl
[81] E. Thomas, “Complex structures on real vector bundles”, Amer. J. Math., 89 (1967), 887–908 | DOI | MR | Zbl
[82] V. M. Buchstaber, T. E. Panov, N. Ray, “Toric genera”, Int. Math. Res. Not., 16 (2010), 3207–3262 | DOI | MR | Zbl
[83] M. W. Davis, T. Januszkiewicz, “Convex polytopes, Coxeter orbifolds and torus actions”, Duke Math. J., 62:2 (1991), 417–451 | DOI | MR | Zbl
[84] V. V. Batyrev, “Quantum cohomology rings of toric manifolds”, Journées de géométrie algébrique d'Orsay (Orsay, 1992), Astérisque, 218, 1993, 9–34 | MR | Zbl
[85] V. M. Buchstaber, N. Ray, “Toric manifolds and complex cobordisms”, Russian Math. Surveys, 53:2 (1998), 371–373 | DOI | DOI | MR | Zbl
[86] V. M. Buchstaber, T. E. Panov, N. Ray, “Spaces of polytopes and cobordism of quasitoric manifolds”, Mosc. Math. J., 7:2 (2007), 219–242 | MR | Zbl
[87] A. A. Kustarev, “Equivariant almost complex structures on quasi-toric manifolds”, Russian Math. Surveys, 64:1 (2009), 156–158 | DOI | DOI | MR | Zbl
[88] V. M. Buchstaber, S. Terzic, “Equivariant complex structures on homogeneous spaces and their cobordism classes”, Geometry, topology, and mathematical physics, S. P. Novikov's seminar: 2006–2007, Amer. Math. Soc. Transl. Ser. 2, 224, eds. V. M. Buchstaber, I. M. Krichever, Amer. Math. Soc., Providence, RI, 2008, 27–57 | MR | Zbl
[89] T. Honda, “Formal groups and zeta-functions”, Osaka J. Math., 5 (1968), 199–213 | MR | Zbl
[90] M. Atiyah, F. Hirzebruch, “Spin-manifolds and group actions”, Essays on topology and related topics, Mémoires dédiés à Georges de Rham, Springer, New York, 1970, 18–28 | MR | Zbl
[91] B. Totaro, “Chern numbers for singular varieties and elliptic homology”, Ann. of Math. (2), 151:2 (2000), 757–791 | DOI | MR | Zbl
[92] H. W. Braden, K. E. Feldman, “Functional equations and the generalised elliptic genus”, J. Nonlinear Math. Phys., 12, Suppl. 1 (2005), 74–85 | DOI | MR
[93] V. M. Buchstaber, E. Yu. Bun'kova, “Krichever formal groups”, Funct. Anal. Appl., 45:2 (2011), 99–116 | DOI | DOI | MR
[94] J. T. Tate, “The arithmetic of elliptic curves”, Invent. Math., 23:3-4 (1974), 179–206 | DOI | MR | Zbl
[95] E. T. Whittaker, G. N. Watson, A course of modern analysis, Reprint of the fourth (1927) edition. An introduction to the general theory of infinite processes and of analytic functions; with an account of the principal transcendental functions, Cambridge Math. Lib., Cambridge Univ. Press, Cambridge, 1996, vi+608 pp. | MR | Zbl
[96] F. Hirzebruch, “Komplexe Mannigfaltigkeiten”, Proc. Internat. Congress Math. 1958, Cambridge Univ. Press, New York, 1960, 119–136 | MR | Zbl
[97] R. E. Stong, “Relations among characteristic numbers. I”, Topology, 4:3 (1965), 267–281 ; “Relations among characteristic numbers. II”, Topology, 5:2 (1966), 133–148 | DOI | MR | Zbl | DOI | MR | Zbl
[98] A. Hattori, “Integral characteristic numbers for weakly almost complex manifolds”, Topology, 5:3 (1966), 259–280 | DOI | MR | Zbl
[99] S. D. Oshanin, “The signature of SU-varieties”, Math. Notes, 13:1 (1973), 57–60 | DOI | MR | Zbl | Zbl
[100] V. M. Buchstaber, A. P. Veselov, “Dunkl operators, functional equations, and transformations of elliptic genera”, Russian Math. Surveys, 49:2 (1994), 145–147 | DOI | MR | Zbl
[101] V. M. Buchstaber, A. P. Veselov, “On a remarkable functional equation in the theory of generalized Dunkl operators and transformations of elliptic genera”, Math. Z., 223:4 (1996), 595–607 | DOI | MR | Zbl
[102] K. E. Feldman, “Chern numbers of Chern submanifolds”, Q. J. Math., 53:4 (2002), 421–429 | DOI | MR | Zbl
[103] K. E. Feldman, “Miraculous cancellation and Pick's theorem”, Toric topology, Contemp. Math., 460, Amer. Math. Soc., Providence, RI, 2008, 71–86 | MR | Zbl
[104] L. Alvarez-Gaumé, E. Witten, “Gravitational anomalies”, Nucl. Phys. B, 234:2 (1984), 269–330 | DOI | MR
[105] G. Pick, “Geometrisches zur Zahlenlehre”, Sitzenber. Lotos Prag. (2), 19 (1900), 311–319 | Zbl
[106] V. M. Bukhshtaber, “Groups of polynomial transformations of a line, non-formal symplectic manifolds, and the Landweber–Novikov algebra”, Russian Math. Surveys, 54:4 (1999), 837–838 | DOI | DOI | MR | Zbl
[107] I. K. Babenko, I. A. Taimanov, “On nonformal simply connected symplectic manifolds”, Siberian Math. J., 41:2 (2000), 204–217 | DOI | MR | Zbl
[108] F. E. A. Johnson, E. G. Rees, “The fundamental groups of algebraic varieties”, Algebraic topology Poznań 1989, Lecture Notes in Math., 1474, Springer, Berlin, 1991, 75–82 | DOI | MR | Zbl
[109] I. K. Babenko, S. A. Bogatyi, “The amenability of the substitution group of formal power series”, Izv. Math., 75:2 (2011), 239–252 | DOI | DOI | MR | Zbl
[110] I. K. Babenko, S. A. Bogatyi, “On the group of substitutions of formal power series with integer coefficients”, Izv. Math., 72:2 (2008), 241–264 | DOI | DOI | MR | Zbl
[111] Russian Math. Surveys, 68:1 (2013), 1–68 | DOI | DOI | MR | Zbl
[112] I. M. Gel'fand, “The cohomology of infinite dimensional Lie algebra: some questions of integral geometry”, Actes du Congrès International des Mathématiciens (Nice, 1970), v. 1, Gauthier-Villars, Paris, 1971, 95–111 | MR | Zbl
[113] L. V. Goncharova, “The cohomologies of Lie algebras of formal vector fields on the line”, Funct. Anal. Appl., 7:2 (1973), 91–97 | DOI | MR | Zbl
[114] L. V. Goncharova, “The cohomologies of Lie algebras of formal vector fields on the line”, Funct. Anal. Appl., 7:3 (1973), 194–203 | DOI | MR
[115] D. B. Fuks, Cohomology of infinite-dimensional Lie algebras, Consultants Bureau, New York, 1986, xii+339 pp. | MR | MR | Zbl
[116] A. I. Malcev, “On a class of homogeneous spaces”, Amer. Math. Soc. Transl., 1951, 1951, 33 pp. | MR | MR | Zbl
[117] L. Auslander, L. Green, F. Hahn, “Flows on homogeneous spaces”, Ann. of Math. Stud., 53, Princeton Univ. Press, Princeton, NJ, 1963, vii+107 pp. | MR | MR | Zbl
[118] V. P. Snaith, “Algebraic cobordism and $K$-theory”, Mem. Amer. Math. Soc., 21:221 (1979), vii+152 pp. | MR | MR | Zbl
[119] D. Gepner, V. Snaith, “On the motivic spectra representing algebraic cobordism and algebraic $K$-theory”, Doc. Math., 14 (2009), 359–396 | MR | Zbl
[120] P. E. Conner, E. E. Floyd, The relation of cobordism to $K$-theories, Lecture Notes in Math., 28, Springer-Verlag, Berlin–New York, 1966, v+112 pp. | MR | Zbl
[121] V. Voevodsky, The Milnor conjecture, 1996 http://www.math.uiuc.edu/K-theory/0170
[122] M. Levine, R. Pandharipande, “Algebraic cobordism revisited”, Invent. Math., 176:1 (2009), 63–130 | DOI | MR | Zbl
[123] I. Panin, K. Pimenov, O. Roendigs, A universality theorem for Voevodsky's algebraic cobordism spectrum, 2007 http://www.math.uiuc.edu/K-theory/0846
[124] A. Vishik, “Symmetric operations in algebraic cobordism”, Adv. Math., 213:2 (2007), 489–552 | DOI | MR | Zbl