Mots-clés : optimal transportation
@article{RM_2012_67_5_a0,
author = {V. I. Bogachev and A. V. Kolesnikov},
title = {The {Monge{\textendash}Kantorovich} problem: achievements, connections, and perspectives},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {785--890},
year = {2012},
volume = {67},
number = {5},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2012_67_5_a0/}
}
TY - JOUR AU - V. I. Bogachev AU - A. V. Kolesnikov TI - The Monge–Kantorovich problem: achievements, connections, and perspectives JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2012 SP - 785 EP - 890 VL - 67 IS - 5 UR - http://geodesic.mathdoc.fr/item/RM_2012_67_5_a0/ LA - en ID - RM_2012_67_5_a0 ER -
V. I. Bogachev; A. V. Kolesnikov. The Monge–Kantorovich problem: achievements, connections, and perspectives. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 67 (2012) no. 5, pp. 785-890. http://geodesic.mathdoc.fr/item/RM_2012_67_5_a0/
[1] L. V. Kantorovich, “O peremeschenii mass”, Dokl. AN SSSR, 37 (1942), 227–229 | MR | Zbl
[2] L. V. Kantorovich, “Ob odnoi probleme Monzha”, UMN, 3:2(24) (1948), 225–226
[3] L. V. Kantorovich, G. Sh. Rubinshtein, “Ob odnom funktsionalnom prostranstve i nekotorykh ekstremalnykh zadachakh”, Dokl. AN SSSR, 115:6 (1957), 1058–1061 | MR | Zbl
[4] L. V. Kantorovich, G. Sh. Rubinshtein, “Ob odnom prostranstve vpolne additivnykh funktsii mnozhestva”, Vestn. LGU, 13:7 (1958), 52–59 | MR | Zbl
[5] A. M. Vershik, “The Kantorovich metric: initial history and little-known applications”, J. Math. Sci. (N. Y.), 133:4 (2006), 1410–1417 | DOI | MR | Zbl
[6] G. Monge, Mémoire sur la théorie des déblais et de remblais, Histoire de l'Académie Royale des Sciences avec les Mémoires de Mathématique de Physique, Paris, 1781, 666–704
[7] Leonid Vitalevich Kantorovich: chelovek i uchenyi, v. 1, 2, Nauka Sibiri v litsakh, eds. V. L. Kantorovich, S. S. Kutateladze, Ya. I. Fet, Izd-vo SO RAN, filial “Geo”, Novosibirsk, 2002, 543, 614 pp. | MR | MR | Zbl
[8] A. M. Vershik, S. S. Kutateladze, S. P. Novikov, “Leonid Vital'evich Kantorovich (on the 100th anniversary of his birth)”, Russian Math. Surveys, 67:3 (2012), 589–597 | DOI | DOI
[9] L. Ambrosio, “Lecture notes on optimal transport problems”, Mathematical aspects of evolving interfaces (Funchal, 2000), Lecture Notes in Math., 1812, Springer, Berlin, 2003, 1–52 | DOI | MR | Zbl
[10] L. Ambrosio, N. Gigli, A user's guide to optimal transport, Scuola Normale Superiore di Pisa, Pisa, 2011
[11] L. Ambrosio, N. Gigli, G. Savaré, Gradient flows in metric spaces and in the space of probability measures, Lectures Math. ETH Zurich, Birkhäuser Verlag, Basel, 2005, viii+333 pp. | MR | Zbl
[12] L. C. Evans, “Partial differential equations and Monge–Kantorovich mass transfer”, Current developments in mathematics, 1997 (Cambridge, MA), Int. Press, Boston, MA, 1999, 65–126 | MR | Zbl
[13] W. Gangbo, R. J. McCann, “The geometry of optimal transportation”, Acta Math., 177:2 (1996), 113–161 | DOI | MR | Zbl
[14] R. J. McCann, N. Guillen, Five lectures on optimal transportation: geometry, regularity and applications, 2010, arXiv: 1011.2911v1
[15] S. T. Rachev, L. Rüschendorf, Mass transportation problems, v. I, II, Probab. Appl. (N. Y.), Springer-Verlag, New York, 1998, xxvi+508, xxvi+430 pp. | MR | MR | Zbl
[16] C. Villani, Topics in optimal transportation, Grad. Stud. Math., 58, Amer. Math. Soc., Providence, RI, 2003, xvi+370 pp. | MR | Zbl
[17] C. Villani, Optimal transport. Old and new, Grundlehren Math. Wiss., 338, Springer-Verlag, Berlin, 2009, xxii+973 pp. | DOI | MR | Zbl
[18] A. M. Vershik, “Some remarks on the infinite-dimensional problems of linear programming”, Russian Math. Surveys, 25:5 (1970), 117–124 | DOI | MR | Zbl
[19] A. N. Bogolyubov, Gaspar Monzh, Nauka, M., 1978, 184 pp.
[20] P. Appell, “Mémoire sur les déblais et les remblais des systèmes continus ou discontinus”, Mém. Acad. Sci. Inst. France, 29, Paris, 1887, 208 pp.
[21] V. N. Sudakov, “Geometric problems of the theory of infinite-dimensional probability distributions”, Proc. Steklov Inst. Math., 141 (1979), 1–178 | MR | Zbl
[22] L. Ambrosio, B. Kirchheim, A. Pratelli, “Existence of optimal transport maps for chrystalline norms”, Duke Math. J., 125:2 (2004), 207–241 | DOI | MR | Zbl
[23] L. C. Evans, W. Gangbo, Differential equations methods for the Monge–Kantorovich mass transfer problem, Mem. Amer. Math. Soc., 137, No 653, 1999, viii+66 pp. | MR | Zbl
[24] T. Champion, L. De Pascale, “The Monge problem in $\mathbb{R}^d$”, Duke Math. J., 157:3 (2011), 551–572 | DOI | MR | Zbl
[25] V. I. Bogachev, “O rabotakh G. M. Fikhtengoltsa po teorii integrala”, Istor.-\allowbreakmatem. issled. Ser. 2, 2005, no. 9(44), 252–264 | MR | Zbl
[26] L. V. Kantorovich, Matematicheskie metody organizatsii i planirovaniya proizvodstva, Izd-vo LGU, L., 1939, 67 pp.; �зд. дом СПбГУ, СПб., 2012
[27] A. M. Vershik, “Many-valued measure-preserving mappings (polymorphisms) and Markovian operators”, J. Soviet Math., 23:3 (1983), 2243–2266 | DOI | MR | Zbl
[28] V. L. Levin, “O teoremakh dvoistvennosti v zadache Monzha–Kantorovicha”, UMN, 32:3(195) (1977), 171–172 | MR | Zbl
[29] V. I. Bogachev, Measure theory, v. I, II, Springer-Verlag, Berlin, 2007, xviii+500, xiv+575 pp. | MR | Zbl
[30] R. Fortet, E. Mourier, “Convergence de la répartition empirique vers la répartition théorique”, Ann. Sci. Ecole Norm. Sup. (3), 70:3 (1953), 267–285 | MR | Zbl
[31] R. F. Arens, J. Eells, Jr., “On embedding uniform and topological spaces”, Pacif. J. Math., 6 (1956), 397–403 | MR | Zbl
[32] D. A. Edwards, “On the Kantorovich–Rubinshtein theorem”, Expos. Math., 29:4 (2011), 387–398 | DOI | MR | Zbl
[33] A. M. Vershik, “Dynamics of metrics in measure spaces and their asymptotic invariants”, Markov Process. Related Fields, 16:1 (2010), 169–184 | MR | Zbl
[34] J. Melleray, F. V. Petrov, A. M. Vershik, “Linearly rigid metric spaces and the embedding problem”, Fund. Math., 199:2 (2008), 177–194 | DOI | MR | Zbl
[35] V. M. Zolotarev, “On the continuity of stochastic sequences generated by recurrent processes”, Theory Probab. Appl., 20:4 (1976), 819–832 | DOI | MR | Zbl
[36] V. M. Zolotarev, “Metric distances in spaces of random variables and their distributions”, Math. USSR-Sb., 30:3 (1976), 373–401 | DOI | MR | Zbl
[37] S. T. Rachev, “Monge–Kantorovich problem on mass transition and its applications in stochastics”, Theory Probab. Appl., 29:4 (1985), 625–653 | DOI | MR | Zbl
[38] R. L. Dobrushin, “Prescribing a system of random variables by conditional distributions”, Theory Probab. Appl., 15:3 (1970), 458–486 | DOI | MR | Zbl
[39] L. N. Vasershtein, “Markov processes over denumerable products of spaces describing large system of automata”, Problems Inform. Transmission, 5:3 (1969), 47–52 | MR | Zbl
[40] Y. Olivier, “A survey of Ricci curvature for metric spaces and Markov chains”, Probabilistic approach to geometry, Adv. Stud. Pure Math., 57, Math. Soc. Japan, Tokyo, 2010, 343–381 | MR | Zbl
[41] L. Rüschendorf, “On $c$-optimal random variables”, Statist. Probab. Lett., 27:3 (1996), 267–270 | DOI | MR | Zbl
[42] M. Knott, C. S. Smith, “On the optimal mapping of distributions”, J. Optim. Theory Appl., 43:1 (1984), 39–49 | DOI | MR | Zbl
[43] M. Beiglböck, M. Goldstern, G. Maresch, W. Schachermayer, “Optimal and better transport plans”, J. Funct. Anal., 256:6 (2009), 1907–1927 | DOI | MR | Zbl
[44] A. Yu. Plakhov, “Precise solutions of the one-dimensional Monge–Kantorovich problem”, Sb. Math., 195:9 (2004), 1291–1307 | DOI | DOI | MR | Zbl
[45] V. L. Levin, “Optimality conditions and exact solutions to the two-dimensional Monge–Kantorovich problem”, J. Math. Sci. (N. Y.), 133:4 (2006), 1456–1463 | DOI | MR | Zbl
[46] V. L. Levin, “General Monge–Kantorovich problem and its applications in measure theory and mathematical economics”, Functional analysis, optimization, and mathematical economics, A collection of papers dedicated to the memory of L. V. Kantorovich, ed. L. J. Leifman, Oxford Univ. Press, New York, 1990, 141–176 | MR | Zbl
[47] D. Ramachandran, L. Rüschendorf, “A general duality theorem for marginal problems”, Probab. Theory Relat. Fields, 101:3 (1995), 311–319 | DOI | MR | Zbl
[48] D. Ramachandran, L. Rüschendorf, “Duality and perfect probability spaces”, Proc. Amer. Math. Soc., 124:7 (1996), 2223–2228 | DOI | MR | Zbl
[49] D. Ramachandran, L. Rüschendorf, “On the Monge–Kantorovich duality theorem”, Theory Probab. Appl., 45:2 (2001), 350–356 | DOI | MR | Zbl
[50] M. Beiglböck, W. Schachermayer, “Duality for Borel measurable cost functions”, Trans. Amer. Math. Soc., 363:8 (2011), 4203–4224 | DOI | MR | Zbl
[51] H. G. Kellerer, “Duality theorems for marginal problems”, Z. Wahrscheinlichkeitstheor. verw. Geb., 67:4 (1984), 399–432 | DOI | MR | Zbl
[52] D. A. Edwards, “A simple proof in Monge–Kantorovich duality theory”, Studia Math., 200:1 (2010), 67–77 | DOI | MR | Zbl
[53] L. Ambrosio, A. Pratelli, “Existence and stability results in the $L^1$ theory of optimal transportation”, Optimal transportation and applications (Martina Franca, 2001), Lecture Notes in Math., 1813, Springer, Berlin, 2003, 123–160 | DOI | MR | Zbl
[54] V. L. Levin, “A formula for the optimal value in the Monge–Kantorovich problem with a smooth cost function, and a characterization of cyclically monotone mappings”, Math. USSR-Sb., 71:2 (1992), 533–548 | DOI | MR | Zbl
[55] V. L. Levin, “On duality theory for non-topological variants of the mass transfer problem”, Sb. Math., 188:4 (1997), 571–602 | DOI | DOI | MR | Zbl
[56] V. L. Levin, “Dvoistvennost Monzha–Kantorovicha i ee primenenie v teorii poleznosti”, Ekonomika i matem. metody, 47:4 (2011), 143–165
[57] V. Levin, “Abstract cyclical monotonicity and Monge solutions for the general Monge–Kantorovich problem”, Set-Valued Anal., 7:1 (1999), 7–32 | DOI | MR | Zbl
[58] V. L. Levin, A. A. Milyutin, “The problem of mass transfer with a discontinuous cost function and a mass statement of the duality problem for convex extremal problems”, Russian Math. Surveys, 34:3 (1979), 1–78 | DOI | MR | Zbl
[59] L. A. Caffarelli, M. Feldman, R. J. McCann, “Constructing optimal maps for Monge's transport problem as a limit of strictly convex costs”, J. Amer. Math. Soc., 15:1 (2002), 1–26 | DOI | MR | Zbl
[60] N. S. Trudinger, X.-J. Wang, “On the Monge mass transfer problem”, Calc. Var. Partial Differential Equations, 13:1 (2001), 19–31 | DOI | MR | Zbl
[61] T. Champion, L. De Pascale, “The Monge problem for strictly convex norms in $\mathbb{R}^d$”, J. Eur. Math. Soc., 12:6 (2010), 1355–1369 | DOI | MR | Zbl
[62] L. Caravenna, “A proof of Sudakov theorem with strictly convex norms”, Math. Z., 268:1-2 (2011), 371–407 | DOI | MR | Zbl
[63] A. V. Pogorelov, Mnogomernoe uravnenie Monzha–Ampera $\det\|z_{ij}\|=\phi(z_1,\dots,z_n,z,x_1,\dots,x_n)$, Nauka, M., 1988, 94 pp. | MR | Zbl
[64] C. E. Gutiérrez, The Monge–Ampère equation, Progr. Nonlinear Differential Equations Appl., 44, Birkhäuser Boston, Inc., Boston, MA, 2001, xii+127 pp. | MR | Zbl
[65] Y. Brenier, “Polar factorization and monotone rearrangement of vector valued functions”, Comm. Pure Appl. Math., 44:4 (1991), 375–417 | DOI | MR | Zbl
[66] R. J. McCann, “Existence and uniqueness of monotone measure-preserving maps”, Duke Math. J., 80:2 (1995), 309–323 | DOI | MR | Zbl
[67] V. I. Bogachev, Differentiable measures and the Malliavin calculus, Math. Surveys Monogr., 164, Amer. Math. Soc., Providence, RI, 2010, xvi+488 pp. | MR | Zbl
[68] R. J. McCann, “A convexity principle for interacting gases”, Adv. Math., 128:1 (1997), 153–179 | DOI | MR | Zbl
[69] R. van der Putten, “Uniqueness and non uniqueness of optimal maps in mass transport problem with not strictly convex cost”, Comment. Math. Univ. Carolin., 51:1 (2010), 67–83 | MR | Zbl
[70] N. V. Krylov, “Fully nonlinear second order elliptic equations: recent development”, Ann. Scuola Norm. Sup. Pisa Cl. Sci (4), 25:3-4 (1997), 569–595 | MR | Zbl
[71] X. Cabré, “Elliptic PDE's in probability and geometry: symmetry and regularity of solutions”, Discrete Contin. Dyn. Syst., 20:3 (2008), 425–457 | DOI | MR | Zbl
[72] N. S. Trudinger, X.-J. Wang, “The Monge–Ampère equation and its geometric applications”, Handbook of geometric analysis, No 1, Adv. Lect. Math. (ALM), 7, Int. Press, Somerville, MA, 2008, 467–524 | MR | Zbl
[73] L. Forzani, D. Maldonaldo, “Properties of the solutions to the Monge–Ampère equation”, Nonlinear Anal., 57:5-6 (2004), 815–829 | DOI | MR | Zbl
[74] G. De Philippis, A. Figalli, $W^{2,1}$-regularity for solutions of the Monge–Ampère equation, 2011, arXiv: 1111.7207v2
[75] I. Fragalà, M. S. Gelli, A. Pratelli, “Continuity of an optimal transport in Monge problem”, J. Math. Pures Appl. (9), 84:9 (2005), 1261–1294 | DOI | MR | Zbl
[76] X.-J. Wang, “Some counterexamples to the regularity of Monge–Ampère equations”, Proc. Amer. Math. Soc., 123:3 (1995), 841–845 | MR | Zbl
[77] L. A. Caffarelli, “Monotonicity properties of optimal transportation and the FKG and related inequalities”, Comm. Math. Phys., 214:3 (2000), 547–563 | DOI | MR | Zbl
[78] D. Bakry, M. Ledoux, “Lévy–Gromov's isoperimetric inequality for an infinite-dimensional diffusion generator”, Invent. Math., 123:2 (1996), 259–281 | DOI | MR | Zbl
[79] D. Cordero-Erausquin, “Some applications of mass transport to Gaussian-type inequalities”, Arch. Ration. Mech. Anal., 161:3 (2002), 257–269 | DOI | MR | Zbl
[80] A. V. Kolesnikov, “Global Hölder estimates for optimal transportation”, Math. Notes, 88:5-6 (2010), 678–695 | DOI | DOI | MR | Zbl
[81] B. Klartag, Poincaré inequalities and moment maps, 2011, arXiv: 1104.2791
[82] A. V. Kolesnikov, “Sobolevskaya regulyarnost transportirovki veroyatnostnykh mer i transportnye neravenstva”, Teoriya veroyatn. i ee primen., 57:2 (2012), 296–321
[83] V. I. Bogachev, A. V. Kolesnikov, “Sobolevskaya regulyarnost dlya beskonechnomernogo uravneniya Monzha–Ampera”, Dokl. RAN, 444:2 (2012), 131–136
[84] V. I. Bogachev, A. V. Kolesnikov, “Sobolev regularity for the Monge–Ampere equation in the Wiener space”, Kyoto J. Math. (to appear); 2011, arXiv: 1110.1822
[85] L. De Pascale, L. C. Evans, A. Pratelli, “Integral estimates for transport densities”, Bull. London Math. Soc., 36:3 (2004), 383–395 | DOI | MR | Zbl
[86] G. Loeper, “On the regularity of solutions of optimal transportation problems”, Acta Math., 202:2 (2009), 241–283 | DOI | MR | Zbl
[87] J. Liu, N. S. Trudinger, X.-J. Wang, “Interior $C^{2,\alpha}$ regularity for potential functions in optimal transportation”, Comm. Partial Differential Equations, 35:1 (2010), 165–184 | DOI | MR | Zbl
[88] G. Loeper, C. Villani, “Regularity of optimal transport in curved geometry: the nonfocal case”, Duke Math. J., 151:3 (2010), 431–485 | DOI | MR | Zbl
[89] L. Caffarelli, R. J. McCann, “Free boundaries in optimal transport and Monge–Ampère obstacle problems”, Ann. of Math. (2), 171:2 (2010), 673–730 | DOI | MR | Zbl
[90] A. Figalli, “The optimal partial transport problem”, Arch. Ration. Mech. Anal., 195:2 (2010), 533–560 | DOI | MR | Zbl
[91] A. Figalli, Y.-H. Kim, “Partial regularity of Brenier solutions of the Monge–Ampère equation”, Discrete Contin. Dyn. Syst., 28:2 (2010), 559–565 | DOI | MR | Zbl
[92] A. A. Lipchius, “A note on the equality in the Monge and Kantorovich problems”, Theory Probab. Appl., 50:4 (2006), 689–693 | DOI | DOI | MR | Zbl
[93] A. Pratelli, “On the equality between Monge's infimum and Kantorovich's minimum in optimal mass transportation”, Ann. Inst. H. Poincaré Probab. Statist., 43:1 (2007), 1–13 | DOI | MR | Zbl
[94] V. D. Milman, G. Schechtman, Asymptotic theory of finite-dimensional normed spaces, with an appendix by M. Gromov, Lecture Notes in Math., 1200, Springer-Verlag, Berlin, 1986, viii+156 pp. | MR | Zbl
[95] D. Cordero-Erausquin, B. Nazaret, C. Villani, “A mass-transportation approach to sharp Sobolev and Gagliardo–Nirenberg inequalities”, Adv. Math., 182:2 (2004), 307–332 | DOI | MR | Zbl
[96] B. Nazaret, “Best constant in Sobolev trace inequalities on the half space”, Nonlinear Anal., 65:10 (2006), 1977–1985 | DOI | MR | Zbl
[97] F. Maggi, C. Villani, “Balls have the worst best Sobolev inequalities”, J. Geom. Anal., 15:1 (2005), 83–121 ; “Balls have the worst best Sobolev inequalities. II: Variants and extensions”, Calc. Var. Partial Differential Equations, 31:1 (2008), 47–74 | DOI | MR | Zbl | DOI | MR | Zbl
[98] A. Figalli, F. Maggi, A. Pratelli, “A mass transportation approach to quantitative isoperimetric inequalities”, Invent. Math., 182:1 (2010), 167–211 | DOI | MR | Zbl
[99] D. Cordero-Erausquin, R. J. McCann, M. Schmuckenschläger, “A Riemannian interpolation inequality à la Borell, Brascamp and Lieb”, Invent. Math., 146:2 (2001), 219–257 | DOI | MR | Zbl
[100] D. Cordero-Erausquin, R. J. McCann, M. Schmuckenschläger, “Prékopa–Leindler type inequalities on Riemannian manifolds, Jacobi fields, and optimal transport”, Ann. Fac. Sci. Toulouse Math. (6), 15:4 (2006), 613–635 | DOI | MR | Zbl
[101] P. Castillon, “Submanifolds, isoperimetric inequalities and optimal transportation”, J. Funct. Anal., 259:1 (2010), 79–103 ; (2009), arXiv: 0908.2711 | DOI | MR | Zbl
[102] L. Gross, “Logarithmic Sobolev inequalities”, Amer. J. Math., 97:4 (1975), 1061–1083 | DOI | MR | Zbl
[103] M. Ledoux, The concentration of measure phenomenon, Math. Surveys Monogr., 89, Amer. Math. Soc., Providence, RI, 2001, x+181 pp. | MR | Zbl
[104] V. I. Bogachev, Gaussovskie mery, Nauka, M., 1997, 352 pp. | MR | Zbl
[105] S. G. Bobkov, F. Götze, “Exponential integrability and transportation cost related to logarithmic Sobolev inequality”, J. Funct. Anal., 163 (1999), 1–28 | DOI | MR | Zbl
[106] G. Perelman, The entropy formula for the Ricci flow and its geometric applications, 2002, arXiv: math/0211159 | Zbl
[107] V. N. Sudakov, B. S. Tsirelson, “Ekstremalnye svoistva poluprostranstv dlya sfericheski invariantnykh mer”, Problemy teorii veroyatnostnykh raspredelenii. II, Zap. nauchn. sem. LOMI, 41, Nauka, L., 1974, 14–24 | MR | Zbl
[108] C. Borell, “The Brunn–Minkowski inequality in Gauss space”, Invent. Math., 30:2 (1975), 207–216 | DOI | MR | Zbl
[109] F.-Y. Wang, “Logarithmic Sobolev inequalities on non-compact Riemannian manifolds”, Probab. Theory Related Fields, 109:3 (1997), 417–424 | DOI | MR | Zbl
[110] F. Barthe, A. V. Kolesnikov, “Mass transport and variants of the logarithmic Sobolev inequality”, J. Geom. Anal., 18:4 (2008), 921–979 | DOI | MR | Zbl
[111] O. S. Rothaus, “Analytic inequalities, isoperimetric inequalities and logarithmic Sobolev inequalities”, J. Funct. Anal., 64:2 (1985), 296–313 | DOI | MR | Zbl
[112] F. Barthe, P. Cattiaux, C. Roberto, “Interpolated inequalities between exponential and Gaussian, Orlicz hypercontractivity and isoperimetry”, Rev. Mat. Iberoam., 22:3 (2006), 993–1067 | DOI | MR | Zbl
[113] D. Cordero-Erausquin, W. Gangbo, C. Houdré, “Inequalities for generalized entropies and optimal transportation”, Recent advances in the theory and applications of mass transport, Contemp. Math., 353, Amer. Math. Soc., Providence, RI, 2004, 73–94 | DOI | MR | Zbl
[114] E. Milman, S. Sodin, “An isoperimetric inequality for uniformly log-concave measures and uniformly convex bodies”, J. Funct. Anal., 254:5 (2008), 1235–1268 | DOI | MR | Zbl
[115] S. G. Bobkov, “Isoperimetric and analytic inequalities for log-concave probability measures”, Ann. Probab., 27:4 (1999), 1903–1921 | DOI | MR | Zbl
[116] A. V. Kolesnikov, “Modified log-Sobolev inequalities and isoperimetry”, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 18:2 (2007), 179–208 | DOI | MR | Zbl
[117] M. Talagrand, “Transportation cost for Gaussian and other product measures”, Geom. Funct. Anal., 6:3 (1996), 587–600 | DOI | MR | Zbl
[118] V. I. Bogachev, A. V. Kolesnikov, “Integrability of absolutely continuous transformations of measures and applications to optimal mass transportation”, Theory Probab. Appl., 50:3 (2006), 367–385 | DOI | DOI | MR | Zbl
[119] F. Otto, C. Villani, “Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality”, J. Funct. Anal., 173:2 (2000), 361–400 | DOI | MR | Zbl
[120] S. G. Bobkov, I. Gentil, M. Ledoux, “Hypercontractivity of Hamilton–Jacobi equations”, J. Math. Pures Appl. (9), 80:7 (2001), 669–696 | DOI | MR | Zbl
[121] P. Cattiaux, A. Guillin, “On quadratic transportation cost inequalities”, J. Math. Pures Appl. (9), 86:4 (2006), 342–361 | DOI | MR | Zbl
[122] N. Gozlan, “Characterization of Talagrand's like transportation-cost inequalities on the real line”, J. Funct. Anal., 250:2 (2007), 400–425 | DOI | MR | Zbl
[123] N. Gozlan, “A characterization of dimension free concentration in terms of transportation inequalities”, Ann. Probab., 37:6 (2009), 2480–2498 | DOI | MR | Zbl
[124] I. Gentil, A. Guillin, L. Miclo, “Modified logarithmic Sobolev inequalities and transportation inequalities”, Probab. Theory Related Fields, 133:3 (2005), 409–436 | DOI | MR | Zbl
[125] H. Djellout, A. Guillin, L. Wu, “Transportation cost-information inequalities and applications to random dynamical systems and diffusions”, Ann. Probab., 32:3B (2004), 2702–2732 | DOI | MR | Zbl
[126] F. Bolley, C. Villani, “Weighted Csiszár–Kullback–Pinsker inequalities and application to transportation inequalities”, Ann. Fac. Sci. Toulouse Math. (6), 14:3 (2005), 331–352 | DOI | MR | Zbl
[127] N. Gozlan, C. Roberto, P. M. Samson, “A new characterization of Talagrand's transport-entropy inequalities and applications”, Ann. Probab., 39:3 (2011), 857–880 | DOI | MR | Zbl
[128] P. Cattiaux, A. Guillin, L.-M. Wu, “A note on Talagrand's transportation inequality and logarithmic Sobolev inequality”, Probab. Theory Related Fields, 148:1-2 (2010), 285–304 | DOI | MR | Zbl
[129] A. Guillin, C. Léonard, L. Wu, N. Yao, “Transportation-information inequalities for Markov processes”, Probab. Theory Related Fields, 144:3-4 (2009), 669–695 | DOI | MR | Zbl
[130] A. Guillin, C. Leonard, F.-Y. Wang, L. Wu, Transportation-information inequalities for Markov processes (II): relations with other functional inequalities, 2009, arXiv: 0902.2101
[131] N. Gozlan, C. Léonard, “Transport inequalities. A survey”, Markov Process. Related Fields, 16:4 (2010), 635–736 | MR | Zbl
[132] J. Dolbeault, B. Nazaret, G. Savaré, “A new class of transport distances between measures”, Calc. Var. Partial Differential Equations, 34:2 (2009), 193–231 | DOI | MR | Zbl
[133] L. Gozlan, C. Léonard, “A large deviation approach to some transportation cost inequalities”, Probab. Theory Related Fields, 139:1-2 (2007), 235–283 | DOI | MR | Zbl
[134] E. Milman, “Isoperimetric and concentration inequalities: equivalence under curvature lower bound”, Duke Math. J., 154:2 (2010), 207–239 | DOI | MR | Zbl
[135] E. Milman, “Properties of isoperimetric, functional and transport-entropy inequalities via concentration”, Probab. Theory Related Fields, 152:3-4 (2012), 475–507 | DOI | MR | Zbl
[136] J. Lott, C. Villani, “Ricci curvature for metric-measure spaces via optimal transport”, Ann. Math. (2), 169:3 (2009), 903–991 | DOI | MR | Zbl
[137] L. Ambrosio, A. Figalli, “Geodesics in the space of measure-preserving maps and plans”, Arch. Ration. Mech. Anal., 194:2 (2009), 421–462 | DOI | MR | Zbl
[138] S. Angenent, S. Haker, A. Tannenbaum, “Minimizing flows for the Monge–Kantorovich problem”, SIAM J. Math. Anal., 35:1 (2003), 61–97 | DOI | MR | Zbl
[139] L. De Pascale, M. S. Gelli, L. Granieri, “Minimal measures, one-dimensional currents and the Monge–Kantorovich problem”, Calc. Var. Partial Differential Equations, 27:1 (2006), 1–23 | DOI | MR | Zbl
[140] A. Figalli, N. Gigli, “A new transportation distance between non-negative measures, with applications to gradients flows with Dirichlet boundary conditions”, J. Math. Pures Appl. (9), 94:2 (2010), 107–130 | DOI | MR | Zbl
[141] J.-D. Benamou, Y. Brenier, “A computational fluid mechanics solution to the Monge–Kantorovich mass transfer problem”, Numer. Math., 84:3 (2000), 375–393 | DOI | MR | Zbl
[142] N. Juillet, “On displacement interpolation of measures involved in Brenier's theorem”, Proc. Amer. Math. Soc., 139:10 (2011), 3623–3632 | DOI | MR | Zbl
[143] K.-Th. Sturm, “On the geometry of metric measure spaces, I, II”, Acta Math., 196 (2006), 65–131, 133–177 | DOI | MR | Zbl
[144] J. Lott, “Some geometric calculations on Wasserstein spaces”, Comm. Math. Phys., 277:2 (2008), 423–437 | DOI | MR | Zbl
[145] F. Otto, “The geometry of dissipative evolution equations: the porous medium equation”, Comm. Partial Differential Equations, 26:1-2 (2001), 101–174 | DOI | MR | Zbl
[146] F. Otto, M. Westdickenberg, “Eulerian calculus for the contraction in the Wasserstein distance”, SIAM J. Math. Anal., 37:4 (2005), 1227–1255 (electronic) | DOI | MR | Zbl
[147] U. Gianazza, G. Savaré, G. Toscani, “The Wasserstein gradient flow of the Fisher information and the quantum drift-diffusion equation”, Arch. Ration. Mech. Anal., 194:1 (2009), 133–220 | DOI | MR | Zbl
[148] R. L. Dobrushin, “Vlasov equations”, Funct. Anal. Appl., 13:2 (1979), 115–123 | DOI | MR | Zbl
[149] R. Jordan, D. Kinderlehrer, F. Otto, “The variational formulation of the Fokker–Planck equation”, SIAM J. Math. Anal., 29:1 (1998), 1–17 | DOI | MR | Zbl
[150] L. Natile, M. A. Peletier, G. Savaré, “Contraction of general transportation costs along solutions to Fokker–Planck equations with monotone drifts”, J. Math. Pures Appl. (9), 95:1 (2011), 18–35 | DOI | MR | Zbl
[151] K. Kuwada, “Duality on gradient estimates and Wasserstein controls”, J. Funct. Anal., 258:11 (2010), 3758–3774 | DOI | MR | Zbl
[152] M.-K. von Renesse, K.-Th. Sturm, “Entropic measure and Wasserstein diffusion”, Ann. Probab., 37:3 (2009), 1114–1191 | DOI | MR | Zbl
[153] A. D. Aleksandrov, Izbrannye trudy, v. 1, 2, Nauka, Novosibirsk, 2006, 2007, lii+748, iv+491 pp. | MR | Zbl
[154] V. Oliker, “Embeddings of $S^n$ into $\mathbb{R}^{n+1}$ with given integral Gauss curvature and optimal mass transport on $S^n$”, Adv. Math., 213:2 (2007), 600–620 | DOI | MR | Zbl
[155] R. J. McCann, “Polar factorization of maps on Riemannian manifolds”, Geom. Funct. Anal., 11:3 (2001), 589–608 | DOI | MR | Zbl
[156] A. Fathi, A. Figalli, “Optimal transportation on non-compact manifolds”, Israel J. Math., 175 (2010), 1–59 | DOI | MR | Zbl
[157] A. Figalli, L. Rifford, “Mass transportation on sub-Riemannian manifolds”, Geom. Funct. Anal., 20:1 (2010), 124–159 | DOI | MR | Zbl
[158] Y.-H. Kim, R. J. McCann, “Continuity, curvature, and the general covariance of optimal transportation”, J. Eur. Math. Soc., 12:4 (2010), 1009–1040 | DOI | MR | Zbl
[159] J.-P. Bourguignon, “Ricci curvature and measures”, Japan. J. Math., 4:1 (2009), 27–45 | DOI | MR | Zbl
[160] M. Gromov, Structures métriques pour les variétés riemanniennes, Textes Math., 1, eds. J. Lafontaine, P. Pansu, CEDIC, Paris, 1981, iv+152 pp. | MR | MR | Zbl | Zbl
[161] A. M. Vershik, “The universal Urysohn space, Gromov metric triples and random metrics on the natural numbers”, Russian Math. Surveys, 53:5 (1998), 921–928 | DOI | DOI | MR | Zbl
[162] A. M. Vershik, “Random metric spaces and universality”, Russian Math. Surveys, 59:2 (2004), 259–295 | DOI | DOI | MR | Zbl
[163] K. Bacher, “On Borell–Brascamp–Lieb inequalities on metric measure spaces”, Potential Anal., 33:1 (2010), 1–15 | DOI | MR | Zbl
[164] K. Bacher, K.-Th. Sturm, “Localization and tensorization properties of the curvature-dimension condition for metric measure spaces”, J. Funct. Anal., 259:1 (2010), 28–56 | DOI | MR | Zbl
[165] Q. Deng, K.-Th. Sturm, “Localization and tensorization properties of the curvature-dimension condition for metric measure spaces, II”, J. Funct. Anal., 260:12 (2011), 3718–3725 | DOI | MR | Zbl
[166] D. Bakry, M. Émery, “Diffusions hypercontractives”, Séminaire de probabilités, XIX, 1983/84, Lecture Notes in Math., 1123, Springer, Berlin, 1985, 177–206 | DOI | MR | Zbl
[167] V. I. Bogachev, A. V. Kolesnikov, “Mass transport generated by a flow of Gauss maps”, J. Funct. Anal., 256:3 (2009), 940–957 | DOI | MR | Zbl
[168] G. Huisken, “Flow by mean curvature of convex surfaces into spheres”, J. Differential Geom., 20:1 (1984), 237–266 | MR | Zbl
[169] K. Tso, “Deforming a hypersurfaces by its Gauss–Kronecker curvature”, Comm. Pure Appl. Math., 38:6 (1985), 867–882 | DOI | MR | Zbl
[170] A. V. Kolesnikov, Weak regularity of Gauss mass transport, 2009, arXiv: 0904.1852
[171] Y.-H. Kim, J. Streets, M. Warren, Parabolic optimal transport equations on manifolds, 2010, arXiv: 1008.3824v1
[172] R. J. McCann, P. M. Topping, “Ricci flow, entropy and optimal transportation”, Amer. J. Math., 132:3 (2010), 711–730 | DOI | MR | Zbl
[173] P. Topping, Ricci flows: the foundations via optimal transportation http://homepages.warwick.ac.uk/~maseq/grenoble_20100324.pdf
[174] P. Topping, “$\mathscr{L}$-optimal transportation for Ricci flows”, J. Reine Angew. Math., 636 (2009), 93–122 | DOI | MR | Zbl
[175] J. Lott, “Optimal transport and Perelman's reduced volume”, Calc. Var. Partial Differential Equations, 36:1 (2009), 49–84 | DOI | MR | Zbl
[176] G. Buttazzo, A. Pratelli, S. Solimini, E. Stepanov, Optimal urban networks via mass transportation, Lecture Notes in Math., 1961, Springer-Verlag, Berlin, 2009, x+150 pp. | DOI | MR | Zbl
[177] M. Bernot, V. Caselles, J.-M. Morel, Optimal transportation networks. Models and theory, Lecture Notes in Math., 1955, Springer-Verlag, Berlin, 2009, x+200 pp. | MR | Zbl
[178] A. S. Üstünel, M. Zakai, Transformation of measure on Wiener space, Springer Monogr. Math., Springer-Verlag, Berlin, 2000, xiv+296 pp. | MR | Zbl
[179] V. I. Bogachev, A. V. Kolesnikov, K. V. Medvedev, “Triangular transformations of measures”, Sb. Math., 196:3-4 (2005), 309–335 | DOI | DOI | MR | Zbl
[180] D. Feyel, A. S. Üstünel, “Monge–Kantorovitch measure transportation and Monge–Ampère equation on Wiener space”, Probab. Theory Related Fields, 128:3 (2004), 347–385 | DOI | MR | Zbl
[181] D. Feyel, A. S. Üstünel, “Solution of the Monge–Ampère equation on Wiener space for general log-concave measures”, J. Funct. Anal., 232:1 (2006), 29–55 | DOI | MR | Zbl
[182] D. Feyel, A. S. Üstünel, “The notions of convexity and concavity on Wiener space”, J. Funct. Anal., 176:2 (2000), 400–428 | DOI | MR | Zbl
[183] A. V. Kolesnikov, “Convexity inequalities and optimal transport of infinite-dimensional measures”, J. Math. Pures Appl. (9), 83:11 (2004), 1373–1404 | DOI | MR | Zbl
[184] F. Cavalletti, “The Monge problem in Wiener space”, Calc. Var. Partial Differential Equations, 45:1-2 (2012), 101–124 ; (2011), arXiv: 1103.2798v2 | DOI | MR
[185] V. I. Bogachev, A. V. Kolesnikov, “On the Monge–Ampère equation in infinite dimensions”, Infin. Dimen. Anal. Quantum Probab. Related Top., 8:4 (2005), 547–572 | DOI | MR | Zbl
[186] S. Fang, J. Shao, K.-Th. Sturm, “Wasserstein space over the Wiener space”, Probab. Theory Related Fields, 146:3-4 (2010), 535–565 | DOI | MR | Zbl
[187] L. Decreusefond, “Wasserstein distance on configuration space”, Potential Anal., 28:3 (2008), 283–300 | DOI | MR | Zbl
[188] V. I. Bogachev, A. V. Kolesnikov, “Nonlinear transformations of convex measures”, Theory Probab. Appl., 50:1 (2006), 34–52 | DOI | DOI | MR | Zbl
[189] S. G. Bobkov, “Large deviations via transference plans”, Advances in mathematics research, v. 2, Adv. Math. Res., 2, Nova Sci. Publ., Hauppauge, NY, 2003, 151–175 | MR | Zbl
[190] G. Carlier, A. Galichon, F. Santambrogio, “From Knothe's transport to Brenier's map and a continuation method for optimal transport”, SIAM J. Math. Anal., 41:6 (2009/10), 2554–2576 | DOI | MR | Zbl
[191] J. Moser, “On the volume elements on a manifold”, Trans. Amer. Math. Soc., 120 (1965), 286–294 | DOI | MR | Zbl
[192] Y.-H. Kim and E. Milman, “A generalization of Caffarelli's contraction theorem via (reverse) heat flow”, Math. Ann., 354:3 (2012), 827–862
[193] J. A. Carrillo, M. DiFrancesco, A. Figalli, T. Laurent, D. Slepčev, “Global-in-time weak measure solutions and finite-time aggregation for nonlocal interaction equations”, Duke Math. J., 156:2 (2011), 229–271 | DOI | MR | Zbl
[194] P. Bernard, “Young measures, superposition and transport”, Indiana Univ. Math. J., 57:1 (2008), 247–275 | DOI | MR | Zbl
[195] W. Gangbo, A. Świȩch, “Optimal maps for the multidimensional Monge–Kantorovich problem”, Comm. Pure Appl. Math., 51:1 (1998), 23–45 | 3.0.CO;2-H class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[196] W. Gangbo, H. K. Kim, T. Pacini, Differential forms on Wasserstein space and infinite-dimensional Hamiltonian systems, Mem. Amer. Math. Soc., 211, No 993, 2011, vi+77 pp. | DOI | MR | Zbl