The Monge--Kantorovich problem: achievements, connections, and perspectives
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 67 (2012) no. 5, pp. 785-890
Voir la notice de l'article provenant de la source Math-Net.Ru
This article gives a survey of recent research related to the Monge–Kantorovich problem. Principle results are presented on the existence of solutions and their properties both in the Monge optimal transportation problem and the Kantorovich optimal plan problem, along with results on the connections between both problems and the cases when they are equivalent. Diverse applications of these problems in non-linear analysis, probability theory, and differential geometry are discussed.
Bibliography: 196 titles.
Keywords:
Monge problem, Kantorovich problem, transport inequality, Kantorovich–Rubinshtein metric.
Mots-clés : optimal transportation
Mots-clés : optimal transportation
@article{RM_2012_67_5_a0,
author = {V. I. Bogachev and A. V. Kolesnikov},
title = {The {Monge--Kantorovich} problem: achievements, connections, and perspectives},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {785--890},
publisher = {mathdoc},
volume = {67},
number = {5},
year = {2012},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2012_67_5_a0/}
}
TY - JOUR AU - V. I. Bogachev AU - A. V. Kolesnikov TI - The Monge--Kantorovich problem: achievements, connections, and perspectives JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2012 SP - 785 EP - 890 VL - 67 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RM_2012_67_5_a0/ LA - en ID - RM_2012_67_5_a0 ER -
%0 Journal Article %A V. I. Bogachev %A A. V. Kolesnikov %T The Monge--Kantorovich problem: achievements, connections, and perspectives %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2012 %P 785-890 %V 67 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/RM_2012_67_5_a0/ %G en %F RM_2012_67_5_a0
V. I. Bogachev; A. V. Kolesnikov. The Monge--Kantorovich problem: achievements, connections, and perspectives. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 67 (2012) no. 5, pp. 785-890. http://geodesic.mathdoc.fr/item/RM_2012_67_5_a0/