Mots-clés : Entscheidungsproblem.
@article{RM_2012_67_4_a2,
author = {V. B. Shehtman},
title = {Squares of modal logics with additional connectives},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {721--777},
year = {2012},
volume = {67},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2012_67_4_a2/}
}
V. B. Shehtman. Squares of modal logics with additional connectives. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 67 (2012) no. 4, pp. 721-777. http://geodesic.mathdoc.fr/item/RM_2012_67_4_a2/
[1] K. Fine, “Logics containing K4. Part I”, J. Symbolic Logic, 39 (1974), 31–42 | DOI | MR | Zbl
[2] V. B. Shekhtman, “Two-dimensional modal logic”, Math. Notes, 23:5 (1978), 417–424 | DOI | MR | Zbl | Zbl
[3] V. B. Shehtman, “On some two-dimensional modal logics”, Logic, methodology, and philosophy of science, Abstracts of the 8th International Congress, v. 1, Moscow, 1987, 326–330
[4] D. M. Gabbay, A. Kurucz, F. Wolter, M. Zakharyaschev, Many-dimensional modal logics: theory and applications, Stud. Logic Found. Math., 148, North-Holland Publishing Co., Amsterdam, 2003, xviii+747 pp. | MR | Zbl
[5] D. M. Gabbay, V. B. Shehtman, “Products of modal logics. Part 1”, Log. J. IGPL, 6:1 (1998), 73–146 | DOI | MR | Zbl
[6] D. M. Gabbay, V. B. Shehtman, “Products of modal logics. Part 2: Relativised quantifiers in classical logic”, Log. J. IGPL, 8:2 (2000), 165–210 | DOI | MR | Zbl
[7] D. Gabbay, V. Shehtman, “Products of modal logics. Part 3: Products of modal and temporal logics”, Studia Logica, 72:2 (2002), 157–183 | DOI | MR | Zbl
[8] V. Shehtman, “Filtration via bisimulation”, Advances in Modal Logic, 5, eds. R. Schmidt et al., King's Coll. Publ., London, 2005, 289–308 | MR | Zbl
[9] A. Kurucz, “Combining modal logics”, Handbook of modal logic, Stud. Log. Pract. Reason., 3, Elsevier, Amsterdam, 2007, 869–927
[10] D. Gabelaia, A. Kurucz, F. Wolter, M. Zakharyaschev, “Products of “transitive” modal logics”, J. Symbolic Logic, 70:3 (2005), 993–1021 | DOI | MR | Zbl
[11] V. B. Shekhtman, “Nerazreshimye ischisleniya vyskazyvanii”, Voprosy kibernetiki. Neklassicheskie logiki i ikh prilozheniya, Nauka, M., 1982, 74–116 | Zbl
[12] A. V. Chagrov, V. B. Shehtman, “Algorithmic aspects of propositional tense logics”, Computer science logic (Kazimierz, 1994), Lecture Notes in Comput. Sci., 933, Springer, Berlin, 1995, 442–455 | DOI | MR | Zbl
[13] K. Segerberg, “Two-dimensional modal logic”, J. Philos. Logic, 2:1 (1973), 77–96 | DOI | MR | Zbl
[14] L. Aqvist, “A conjectured axiomatization of two-dimensional Reichenbachian tense logic”, J. Philos. Logic, 8:1 (1979), 1–45 | DOI | MR | Zbl
[15] M. Marx, Y. Venema, Multi-dimensional modal logic, Appl. Log. Ser., 4, Kluwer Academic Publishers, Dordrecht, 1997, xiv+239 pp. | DOI | MR | Zbl
[16] S. P. Kikot', “Axiomatization of modal logic squares with distinguished diagonal”, Math. Notes, 88:2 (2010), 238–250 | DOI | MR | Zbl
[17] A. V. Chagrov, M. V. Zakharyaschev, Modal logic, Oxford Logic Guides, 35, The Clarendon Press, Oxford Univ. Press, New York, 1997, xvi+605 pp. | MR | Zbl
[18] J. Van Benthem, Modal logic and classical logic, Indices Monogr. Philos. Logic Formal Linguistics, III, Bibliopolis, Naples, 1985, 235 pp. | MR | Zbl
[19] P. Blackburn, M. de Rijke, Y. Venema, Modal logic, Cambridge Tracts Theoret. Comput. Sci., 53, Cambridge Univ. Press, Cambridge, 2001, xxii+554 pp. | MR | Zbl
[20] K. Segerberg, “On the logic of “to-morrow””, Theoria, 33 (1967), 45–52 | DOI | Zbl
[21] S. Kikot', “On modal definability of Horn formulas”, Topology, algebra and categories in logic (TACL 2011), Abstracts of the 5th International Conference, University of Marseilles, Marseilles, 2011, 175–178