Squares of modal logics with additional connectives
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 67 (2012) no. 4, pp. 721-777 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper studies two-dimensional modal logics of a special type, ‘Segerberg squares’. They are defined as the usual squares of modal logics with additional connectives corresponding to the diagonal symmetry and the two projections onto the diagonal. For these logics a finite axiomatization is constructed in many cases, and completeness and the finite model property are proved. A translation of Segerberg squares into classical predicate logic is constructed. Bibliography: 21 titles.
Keywords: modal logic, product of modal logics, Segerberg square, completeness, finite model property, filtration method, classical predicate logic
Mots-clés : Entscheidungsproblem.
@article{RM_2012_67_4_a2,
     author = {V. B. Shehtman},
     title = {Squares of modal logics with additional connectives},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {721--777},
     year = {2012},
     volume = {67},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2012_67_4_a2/}
}
TY  - JOUR
AU  - V. B. Shehtman
TI  - Squares of modal logics with additional connectives
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2012
SP  - 721
EP  - 777
VL  - 67
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/RM_2012_67_4_a2/
LA  - en
ID  - RM_2012_67_4_a2
ER  - 
%0 Journal Article
%A V. B. Shehtman
%T Squares of modal logics with additional connectives
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2012
%P 721-777
%V 67
%N 4
%U http://geodesic.mathdoc.fr/item/RM_2012_67_4_a2/
%G en
%F RM_2012_67_4_a2
V. B. Shehtman. Squares of modal logics with additional connectives. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 67 (2012) no. 4, pp. 721-777. http://geodesic.mathdoc.fr/item/RM_2012_67_4_a2/

[1] K. Fine, “Logics containing K4. Part I”, J. Symbolic Logic, 39 (1974), 31–42 | DOI | MR | Zbl

[2] V. B. Shekhtman, “Two-dimensional modal logic”, Math. Notes, 23:5 (1978), 417–424 | DOI | MR | Zbl | Zbl

[3] V. B. Shehtman, “On some two-dimensional modal logics”, Logic, methodology, and philosophy of science, Abstracts of the 8th International Congress, v. 1, Moscow, 1987, 326–330

[4] D. M. Gabbay, A. Kurucz, F. Wolter, M. Zakharyaschev, Many-dimensional modal logics: theory and applications, Stud. Logic Found. Math., 148, North-Holland Publishing Co., Amsterdam, 2003, xviii+747 pp. | MR | Zbl

[5] D. M. Gabbay, V. B. Shehtman, “Products of modal logics. Part 1”, Log. J. IGPL, 6:1 (1998), 73–146 | DOI | MR | Zbl

[6] D. M. Gabbay, V. B. Shehtman, “Products of modal logics. Part 2: Relativised quantifiers in classical logic”, Log. J. IGPL, 8:2 (2000), 165–210 | DOI | MR | Zbl

[7] D. Gabbay, V. Shehtman, “Products of modal logics. Part 3: Products of modal and temporal logics”, Studia Logica, 72:2 (2002), 157–183 | DOI | MR | Zbl

[8] V. Shehtman, “Filtration via bisimulation”, Advances in Modal Logic, 5, eds. R. Schmidt et al., King's Coll. Publ., London, 2005, 289–308 | MR | Zbl

[9] A. Kurucz, “Combining modal logics”, Handbook of modal logic, Stud. Log. Pract. Reason., 3, Elsevier, Amsterdam, 2007, 869–927

[10] D. Gabelaia, A. Kurucz, F. Wolter, M. Zakharyaschev, “Products of “transitive” modal logics”, J. Symbolic Logic, 70:3 (2005), 993–1021 | DOI | MR | Zbl

[11] V. B. Shekhtman, “Nerazreshimye ischisleniya vyskazyvanii”, Voprosy kibernetiki. Neklassicheskie logiki i ikh prilozheniya, Nauka, M., 1982, 74–116 | Zbl

[12] A. V. Chagrov, V. B. Shehtman, “Algorithmic aspects of propositional tense logics”, Computer science logic (Kazimierz, 1994), Lecture Notes in Comput. Sci., 933, Springer, Berlin, 1995, 442–455 | DOI | MR | Zbl

[13] K. Segerberg, “Two-dimensional modal logic”, J. Philos. Logic, 2:1 (1973), 77–96 | DOI | MR | Zbl

[14] L. Aqvist, “A conjectured axiomatization of two-dimensional Reichenbachian tense logic”, J. Philos. Logic, 8:1 (1979), 1–45 | DOI | MR | Zbl

[15] M. Marx, Y. Venema, Multi-dimensional modal logic, Appl. Log. Ser., 4, Kluwer Academic Publishers, Dordrecht, 1997, xiv+239 pp. | DOI | MR | Zbl

[16] S. P. Kikot', “Axiomatization of modal logic squares with distinguished diagonal”, Math. Notes, 88:2 (2010), 238–250 | DOI | MR | Zbl

[17] A. V. Chagrov, M. V. Zakharyaschev, Modal logic, Oxford Logic Guides, 35, The Clarendon Press, Oxford Univ. Press, New York, 1997, xvi+605 pp. | MR | Zbl

[18] J. Van Benthem, Modal logic and classical logic, Indices Monogr. Philos. Logic Formal Linguistics, III, Bibliopolis, Naples, 1985, 235 pp. | MR | Zbl

[19] P. Blackburn, M. de Rijke, Y. Venema, Modal logic, Cambridge Tracts Theoret. Comput. Sci., 53, Cambridge Univ. Press, Cambridge, 2001, xxii+554 pp. | MR | Zbl

[20] K. Segerberg, “On the logic of “to-morrow””, Theoria, 33 (1967), 45–52 | DOI | Zbl

[21] S. Kikot', “On modal definability of Horn formulas”, Topology, algebra and categories in logic (TACL 2011), Abstracts of the 5th International Conference, University of Marseilles, Marseilles, 2011, 175–178