Mots-clés : Schubert calculus, volume polynomial.
@article{RM_2012_67_4_a1,
author = {V. A. Kirichenko and E. Yu. Smirnov and V. A. Timorin},
title = {Schubert calculus and {Gelfand{\textendash}Zetlin} polytopes},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {685--719},
year = {2012},
volume = {67},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2012_67_4_a1/}
}
TY - JOUR AU - V. A. Kirichenko AU - E. Yu. Smirnov AU - V. A. Timorin TI - Schubert calculus and Gelfand–Zetlin polytopes JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2012 SP - 685 EP - 719 VL - 67 IS - 4 UR - http://geodesic.mathdoc.fr/item/RM_2012_67_4_a1/ LA - en ID - RM_2012_67_4_a1 ER -
V. A. Kirichenko; E. Yu. Smirnov; V. A. Timorin. Schubert calculus and Gelfand–Zetlin polytopes. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 67 (2012) no. 4, pp. 685-719. http://geodesic.mathdoc.fr/item/RM_2012_67_4_a1/
[1] H. H. Andersen, “Schubert varieties and Demazure's character formula”, Invent. Math., 79:3 (1985), 611–618 | DOI | MR | Zbl
[2] N. Bergeron, S. Billey, “RC-graphs and Schubert polynomials”, Experiment. Math., 2:4 (1993), 257–269 | DOI | MR | Zbl
[3] I. N. Bernstein, I. M. Gel'fand, S. I. Gel'fand, “Schubert cells and cohomology of the spaces $G/P$”, Russian Math. Surveys, 28:3 (1973), 1–26 | DOI | MR | Zbl
[4] M. Brion, “The structure of the polytope algebra”, Tohoku Math. J. (2), 49:1 (1997), 1–32 | MR | Zbl
[5] I. Coskun, “A Littlewood–Richardson rule for two-step flag varieties”, Invent. Math., 176:2 (2009), 325–395 | DOI | MR | Zbl
[6] M. Demazure, “Désingularisation des variétés de Schubert généralisées”, Ann. Sci. École Norm. Sup. (4), 7 (1974), 53–88 | MR | Zbl
[7] S. Fomin, A. N. Kirillov, “The Yang–Baxter equation, symmetric functions, and Schubert polynomials”, Discrete Math., 153:1-3 (1996), 123–143 | DOI | MR | Zbl
[8] W. Fulton, Young tableaux, With application to representation theory and geometry, London Math. Soc. Stud. Texts, 35, Cambridge Univ. Press, Cambridge, 1997, x+260 pp. | MR | Zbl
[9] K. Kaveh, “Note on cohomology rings of spherical varieties and volume polynomial”, J. Lie Theory, 21:2 (2011), 263–283, arXiv: math/0312503 | MR | Zbl
[10] K. Kaveh, A. G. Khovanskii, “Newton–Okounkov bodies, semigroups of integral points, graded algebras and intersection theory”, Ann. of Math. (2), 176:2 (2012), 925–978, arXiv: 0904.3350 | DOI
[11] A. G. Khovanskii, “Newton polyhedron, Hilbert polynomial, and sums of finite sets”, Funct. Anal. Appl., 26:4 (1992), 276–281 | DOI | MR | Zbl
[12] V. Kiritchenko, “Gelfand–Zetlin polytopes and geometry of flag varieties”, Int. Math. Res. Not. IMRN, 2010, no. 13, 2512–2531 | DOI | MR | Zbl
[13] S. L. Kleiman, “The transversality of a general translate”, Compositio Math., 28 (1974), 287–297 | MR | Zbl
[14] A. Knutson, E. Miller, “Gröbner geometry of Schubert polynomials”, Ann. of Math. (2), 161:3 (2005), 1245–1318 | DOI | MR | Zbl
[15] M. Kogan, Schubert geometry of flag varieties and Gelfand–Cetlin theory, Ph.D. thesis, Massachusetts Institute of Technology, 2000 | MR
[16] M. Kogan, E. Miller, “Toric degeneration of Schubert varieties and Gelfand–Tsetlin polytopes”, Adv. Math., 193:1 (2005), 1–17 | DOI | MR | Zbl
[17] A. Lascoux, M.-P. Schützenberger, “Polynômes de Schubert”, C. R. Acad. Sci. Paris Sér. I Math., 294:13 (1982), 447–450 | DOI | MR | Zbl
[18] L. Manivel, Fonctions symétriques, polynômes de Schubert et lieux de dégénérescence, Cours Spec., 3, Société Mathématique de France, Paris, 1998, vi+179 pp. | MR | Zbl
[19] E. Miller, “Mitosis recursion for coefficients of Schubert polynomials”, J. Comb. Theory Ser. A, 103:2 (2003), 223–235 | DOI | MR | Zbl
[20] H. Pittie, A. Ram, “A Pieri–Chevalley formula in the $K$-theory of a $G/B$-bundle”, Electron. Res. Announc. Amer. Math. Soc., 5 (1999), 102–107 | DOI | MR | Zbl
[21] A. Postnikov, R. P. Stanley, “Chains in the Bruhat order”, J. Algebraic Combin., 29:2 (2009), 133–174 | DOI | MR | Zbl
[22] A. V. Pukhlikov, A. G. Khovanskii, “The Riemann–Roch theorem for integrals and sums of quasipolynomials on virtual polytopes”, St. Petersburg Math. J., 4:4 (1993), 789–812 | MR | Zbl
[23] V. A. Timorin, “An analogue of the Hodge–Riemann relations for simple convex polytopes”, Russian Math. Surveys, 54:2 (1999), 381–426 | DOI | MR | Zbl