Methods of geometric function theory in classical and modern problems for polynomials
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 67 (2012) no. 4, pp. 599-684 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper gives a survey of classical and modern theorems on polynomials, proved using methods of geometric function theory. Most of the paper is devoted to results of the author and his students, established by applying majorization principles for holomorphic functions, the theory of univalent functions, the theory of capacities, and symmetrization. Auxiliary results and the proofs of some of the theorems are presented. Bibliography: 124 titles.
Keywords: majorization principles, Schwarz's lemma, capacities, univalent functions, symmetrization, inequalities, polynomials, critical points, critical values, rational functions.
@article{RM_2012_67_4_a0,
     author = {V. N. Dubinin},
     title = {Methods of geometric function theory in classical and modern problems for polynomials},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {599--684},
     year = {2012},
     volume = {67},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2012_67_4_a0/}
}
TY  - JOUR
AU  - V. N. Dubinin
TI  - Methods of geometric function theory in classical and modern problems for polynomials
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2012
SP  - 599
EP  - 684
VL  - 67
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/RM_2012_67_4_a0/
LA  - en
ID  - RM_2012_67_4_a0
ER  - 
%0 Journal Article
%A V. N. Dubinin
%T Methods of geometric function theory in classical and modern problems for polynomials
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2012
%P 599-684
%V 67
%N 4
%U http://geodesic.mathdoc.fr/item/RM_2012_67_4_a0/
%G en
%F RM_2012_67_4_a0
V. N. Dubinin. Methods of geometric function theory in classical and modern problems for polynomials. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 67 (2012) no. 4, pp. 599-684. http://geodesic.mathdoc.fr/item/RM_2012_67_4_a0/

[1] G. V. Milovanović, D. S. Mitrinović, Th. M. Rassias, Topics in polynomials: extremal problems, inequalities, zeros, World Scientific Publishing Co., Inc., River Edge, NJ, 1994, xiv+821 pp. | MR | Zbl

[2] P. Borwein, T. Erdélyi, Polynomials and polynomial inequalities, Grad. Texts in Math., 161, Springer-Verlag, New York, 1995, x+480 pp. | MR | Zbl

[3] Q. I. Rahman, G. Schmeisser, “Analytic theory of polynomials”, London Math. Soc. Monogr. (N.S.), 26, The Clarendon Press, Oxford; Oxford Univ. Press, 2002, xiv+742 pp. | MR | Zbl

[4] T. Sheil-Small, Complex polynomials, Cambridge Stud. Adv. Math., 75, Cambridge Univ. Press, Cambridge, 2002, xx+428 pp. | DOI | MR | Zbl

[5] V. V. Prasolov, Polynomials, Algorithms Comput. Math., 11, Springer-Verlag, Berlin, 2004, xiv+301 pp. | MR | Zbl

[6] A. Bogatyrev, Extremal polynomials and Riemann surfaces, Springer Monogr. Math., Springer, Berlin, 2012, xxv+150 pp. | MR | Zbl

[7] V. N. Dubinin, “Distortion theorems for polynomials on a circle”, Sb. Math., 191:12 (2000), 1797–1807 | DOI | MR | Zbl

[8] V. N. Dubinin, “Conformal mappings and inequalities for algebraic polynomials”, St. Petersburg Math. J., 13:5 (2002), 717–737 | MR | Zbl

[9] V. N. Dubinin, “On an application of conformal maps to inequalities for rational functions”, Izv. Math., 66:2 (2002), 285–297 | DOI | MR | Zbl

[10] V. N. Dubinin, “Conformal mappings and inequalities for algebraic polynomials. II”, J. Math. Sci. (N. Y.), 129:3 (2005), 3823–3834 | DOI | MR | Zbl

[11] V. N. Dubinin, “Schwarz's lemma and estimates of coefficients for regular functions with free domain of definition”, Sb. Math., 196:11 (2005), 1605–1625 | DOI | MR | Zbl

[12] V. N. Dubinin, “Polynomials with critical values on intervals”, Math. Notes, 78:6 (2005), 768–772 | DOI | MR | Zbl

[13] V. N. Dubinin, “Inequalities for critical values of polynomials”, Sb. Math., 197:8 (2006), 1167–1176 | DOI | MR | Zbl

[14] V. N. Dubinin, “Lemniscates and inequalities for the logarithmic capacities of continua”, Math. Notes, 80:1-2 (2006), 31–35 | DOI | MR | Zbl

[15] V. N. Dubinin, “Applications of the Schwarz lemma to inequalities for entire functions with constraints on zeros”, J. Math. Sci. (N. Y.), 143:3 (2007), 3069–3076 | DOI | MR | Zbl

[16] V. N. Dubinin, “Majorization principles for meromorphic functions”, Math. Notes, 84:5-6 (2008), 751–755 | DOI | MR | Zbl

[17] V. N. Dubinin, “On the lemniscate components containing no critical points of a polynomial except for its zeros”, J. Math. Sci. (N. Y.), 178:2 (2011), 158–162 | DOI | MR

[18] V. N. Dubinin, “On the finite-increment theorem for complex polynomials”, Math. Notes, 88:5-6 (2010), 647–654 | DOI | MR | Zbl

[19] V. N. Dubinin, “K teoremam iskazheniya dlya algebraicheskikh polinomov”, Dalnevost. matem. zhurn., 11:1 (2011), 28–36 | MR

[20] V. N. Dubinin, “Lower bound for the discrete norm of a polynomial on the circle”, Math. Notes, 90:1-2 (2011), 284–287 | DOI | MR | Zbl

[21] V. N. Dubinin, “Novaya versiya krugovoi simmetrizatsii s prilozheniyami k $p$-listnym funktsiyam”, Matem. sb., 203:7 (2012), 79–94

[22] V. N. Dubinin, “Reduced modules and inequalities for polynomials”, J. Math. Sci. (N. Y.), 110:6 (2002), 3070–3077 | DOI | MR | Zbl

[23] V. N. Dubinin, A. V. Olesov, “Application of conformal mappings to inequalities for polynomials”, J. Math. Sci. (N. Y.), 122:6 (2004), 3630–3640 | DOI | MR | Zbl

[24] V. N. Dubinin, S. I. Kalmykov, “Ekstremalnye svoistva polinomov Chebyshëva”, Dalnevost. matem. zhurn., 5:2 (2004), 169–177

[25] V. N. Dubinin, S. I. Kalmykov, “A majoration principle for meromorphic functions”, Sb. Math., 198:12 (2007), 1737–1745 | DOI | MR | Zbl

[26] V. Dubinin, T. Sugawa, “Dual mean value problem for complex polynomials”, Proc. Japan. Acad. Ser. A Math. Sci., 85:9 (2009), 135–137 | DOI | MR | Zbl

[27] V. N. Dubinin, D. A. Kirillova, “Nekotorye primeneniya ekstremalnykh razbienii v geometricheskoi teorii funktsii”, Dalnevost. matem. zhurn., 10:2 (2010), 130–152 | MR

[28] V. N. Dubinin, S. I. Kalmykov, “On polynomials with constraints on circular arcs”, J. Math. Sci. (N. Y.), 184 (2012), 703–708 | DOI | MR

[29] S. I. Kalmykov, “Covering theorems for polynomials with curved majorants on two intervals”, J. Math. Sci. (N. Y.), 178:2 (2011), 170–177 | DOI | MR

[30] S. I. Kalmykov, “Polynomials with curved majorants on two segments”, Russian Math. (Iz. VUZ), 53:10 (2009), 64–67 | DOI | MR | Zbl

[31] S. I. Kalmykov, “An estimate for the modulus of a rational function”, J. Math. Sci. (N. Y.), 166:2 (2010), 186–190 | DOI | MR

[32] S. I. Kalmykov, “Majoration principles and some inequalities for polynomials and rational functions with prescribed poles”, J. Math. Sci. (N. Y.), 157:4 (2009), 623–631 | DOI | MR | Zbl

[33] A. V. Olesov, “Differential inequalities for algebraic polynomials”, Siberian Math. J., 51:4 (2010), 706–711 | DOI | MR | Zbl

[34] A. V. Olesov, “Application of conformal mappings to inequalities for trigonometric polynomials”, Math. Notes, 76:3-4 (2004), 368–378 | DOI | MR | Zbl

[35] A. V. Olesov, “Inequalities for entire functions of finite degree and polynomials”, J. Math. Sci. (N. Y.), 133:6 (2006), 1704–1717 | DOI | MR | Zbl

[36] A. V. Olesov, “Inequalities for majorizing analytic functions”, J. Math. Sci. (N. Y.), 133:6 (2006), 1693–1703 | DOI | MR | Zbl

[37] V. N. Dubinin, “Symmetrization in the geometric theory of functions of a complex variable”, Russian Math. Surveys, 49:1 (1994), 1–79 | DOI | MR | Zbl

[38] V. N. Dubinin, Emkosti kondensatorov i simmetrizatsiya v geometricheskoi teorii funktsii kompleksnogo peremennogo, Dalnauka, Vladivostok, 2009, 390 pp.

[39] G. M. Goluzin, Geometricheskaya teoriya funktsii kompleksnogo peremennogo, 2-e izd., Nauka, M., 1966, 628 pp. | MR | Zbl

[40] K. Dochev, “Some extremal properties of polynomials”, Soviet Math. Dokl., 4 (1963), 1704–1706 | MR | Zbl

[41] R. Duffin, A. C. Schaeffer, “Some properties of functions of exponential type”, Bull. Amer. Math. Soc., 44:4 (1938), 236–240 | DOI | MR | Zbl

[42] T. Sheil-Small, “An inequality for the modulus of a polynomial evaluated at the roots of unity”, Bull. Lond. Math. Soc., 40:6 (2008), 956–964 | DOI | MR | Zbl

[43] E. Rakhmanov, B. Shekhtman, “On discrete norms of polynomials”, J. Approx. Theory, 139:1-2 (2006), 2–7 | DOI | MR | Zbl

[44] P. Borwein, T. Erdélyi, J. Zhang, “Chebyshev polynomials and Markov–Bernstein type inequalities for rational spaces”, J. London Math. Soc. (2), 50:3 (1994), 501–519 | DOI | MR | Zbl

[45] P. Borwein, T. Erdélyi, “Sharp extensions of Bernstein's inequality to rational spaces”, Mathematika, 43:2 (1996), 413–423 | DOI | MR | Zbl

[46] X. Li, R. N. Mohapatra, R. S. Rodriguez, “Bernstein-type inequalities for rational functions with prescribed poles”, J. London Math. Soc. (2), 51:3 (1995), 523–531 | DOI | MR | Zbl

[47] R. Jones, X. Li, R. N. Mohapatra, R. S. Rodrigues, “On the Bernstein inequality for rational functions with a prescribed zero”, J. Approx. Theory, 95:3 (1998), 476–496 | DOI | MR | Zbl

[48] X. Li, “Integral formulas and inequalities for rational functions”, J. Math. Anal. Appl., 211:2 (1997), 386–394 | DOI | MR | Zbl

[49] A. Aziz, W. M. Shah, “Some refinements of Bernstein-type inequalities for rational functions”, Glas. Mat. Ser. III, 32(52):1 (1997), 29–37 | MR | Zbl

[50] G. Min, “Inequalities for rational functions with prescribed poles”, Canad. J. Math., 50:1 (1998), 152–166 | DOI | MR | Zbl

[51] V. N. Rusak, Ratsionalnye funktsii kak apparat priblizheniya, Izd-vo BGU, Minsk, 1979, 174 pp. | MR

[52] V. S. Videnskii, “Nekotorye otsenki proizvodnykh ot ratsionalnykh drobei”, Izv. RAN SSSR. Ser. matem., 26:3 (1962), 415–426 | MR | Zbl

[53] R. Osserman, “A sharp Schwarz inequality on the boundary”, Proc. Amer. Math. Soc., 128:12 (2000), 3513–3517 | DOI | MR | Zbl

[54] V. N. Dubinin, “The Schwarz inequality on the boundary for functions regular in the disk”, J. Math. Sci. (N. Y.), 122:6 (2004), 3623–3629 | DOI | MR | Zbl

[55] A. Yu. Solynin, “The boundary distortion and extremal problems in certain classes of univalent functions”, J. Math. Sci. (N. Y.), 79:5 (1996), 1341–1358 | DOI | MR | Zbl | Zbl

[56] H. P. Boas, “Julius and Julia: mastering the art of the Schwarz lemma”, Amer. Math. Monthly, 117:9 (2010), 770–785 | DOI | MR | Zbl

[57] S. G. Krantz, “The Schwarz lemma at the boundary”, Complex Var. Elliptic Equ., 56:5 (2011), 455–468 | DOI | MR | Zbl

[58] A. Aziz, Q. G. Mohammad, “Growth of polynomials with zeros outside a circle”, Proc. Amer. Math. Soc., 81:4 (1981), 549–553 | DOI | MR | Zbl

[59] N. C. Ankeny, T. J. Rivlin, “On a theorem of S. Bernstein”, Pacific J. Math., 5, Suppl. 2 (1955), 849–852 | MR | Zbl

[60] P. Turan, “Über die Ableitung von Polynomen”, Compositio Math., 7 (1939), 89–95 | MR | Zbl

[61] P. Pawlowski, “On the zeros of a polynomial and its derivatives”, Trans. Amer. Math. Soc., 350:11 (1998), 4461–4472 | DOI | MR | Zbl

[62] S. N. Bernshtein, Sobranie sochinenii, v. 2, Konstruktivnaya teoriya funktsii (1931–1953), Iz-vo AN SSSR, M., 1954, 627 pp. | MR | Zbl

[63] B. Ya. Levin, Lectures on entire functions, Transl. Math. Monog., 150, Amer. Math. Soc., Providence, RI, 1996, xvi+248 pp. | MR | Zbl

[64] R. Gardner, N. K. Govil, “Functions of exponential type not vanishing in a half-plane”, Analysis, 17:4 (1997), 395–402 | MR | Zbl

[65] N. K. Govil, M. A. Qazi, “On maximum modulus of polynomials and related entire functions with restricted zeros”, Math. Inequal. Appl., 5:1 (2002), 57–60 | DOI | MR | Zbl

[66] N. K. Govil, M. A. Qazi, Q. I. Rahman, “A new property of entire functions of exponential type not vanishing in a half-plane and applications”, Complex Var. Theory Appl., 48:11 (2003), 897–908 | DOI | MR | Zbl

[67] T. G. Genchev, “Inequalities for asymmetric entire functions of exponential type”, Soviet Math. Dokl., 19 (1978), 981–985 | MR | Zbl

[68] S. Stoilow, Teoria funcţiilor de o variabilă complexă, v. 2, Funcţii armonice. Suprafeţe Riemanniene, Editura Academiei Republicii Populare Romîne, Bucharest, 1958, 378 pp. | MR | Zbl

[69] V. N. Dubinin, M. Vuorinen, “Robin functions and distortion theorems for regular mappings”, Math. Nachr., 283:11 (2010), 1589–1602 | DOI | MR | Zbl

[70] I. P. Mityuk, “The symmetrization principle for multiply connected domains”, Soviet Math. Dokl., 5 (1964), 928–930 | Zbl

[71] I. P. Mityuk, “Printsip simmetrizatsii dlya mnogosvyaznykh oblastei i nekotorye ego primeneniya”, Ukr. matem. zhurn., 17:4 (1965), 46–54 | Zbl

[72] I. P. Mityuk, Simmetrizatsionnye metody i ikh primenenie v geometricheskoi teorii funktsii. Vvedenie v simmetrizatsionnye metody, Izd-vo Kubansk. gos. un-ta, Krasnodar, 1980, 90 pp.

[73] I. P. Mityuk, Primenenie simmetrizatsionnykh metodov v geometricheskoi teorii funktsii, Izd-vo Kubansk. gos. un-ta, Krasnodar, 1985, 94 pp.

[74] I. P. Mityuk, “Otsenki vnutrennego radiusa (emkosti) nekotoroi oblasti (kondensatora)”, Izv. Severo-Kavkaz. nauchn. tsentra vyssh. shk. estestv. nauk, 43:3 (1983), 36–38 | MR | Zbl

[75] A. L. Lukashov, “Inequalities for the derivatives of rational functions on several intervals”, Izv. Math., 68:3 (2004), 543–565 | DOI | MR | Zbl

[76] A. L. Lukashov, “Estimates for derivatives of rational functions and the fourth Zolotarev problem”, St. Petersburg Math. J., 19:2 (2008), 253–259 | DOI | MR | Zbl

[77] S. V. Tyshkevich, “On Chebyshev polynomials on arcs of a circle”, Math. Notes, 81:6 (2007), 851–853 | DOI | MR | Zbl

[78] L. S. Maergoĭz, N. N. Rybakova, “Chebyshev polynomials with zeros lying on a circular arc”, Dokl. Math., 79:3 (2009), 319–321 | DOI | MR | Zbl

[79] A. L. Lukashov, S. V. Tyshkevich, “Extremal polynomials on arcs of the circle with zeros on these arcs”, J. Contemp. Math. Anal., 44:3 (2009), 172–179 | DOI | MR | Zbl

[80] V. V. Arestov, A. S. Mendelev, “On trigonometric polynomials least deviating from zero”, Dokl. Math., 79:2 (2009), 280–283 | DOI | MR | Zbl

[81] V. S. Videnskii, “Extremal estimates for the derivative of a trigonometric polynomial on an interval shorter than its period”, Soviet Math. Dokl., 1 (1960), 5–8 | MR | Zbl

[82] J.-P. Thiran, C. Detaille, “Chebyshev polynomials on circular arcs in the complex plane”, Progress in approximation theory, Academic Press, Boston, MA, 1991, 771–786 | MR

[83] J. A. Jenkins, Univalent functions and conformal mapping, Ergeb. Math. Grenzgeb. Neue Folge, 18, Reihe: Moderne Funktionentheorie, Springer-Verlag, Berlin–Gottingen–Heidelberg, 1958, vi+169 pp. | MR | Zbl

[84] A. W. Goodman, Univalent functions, v. I, II, Tampa, FL, Mariner Publishing Co., Inc., 1983, xvii+246; xii+311 pp. | MR | Zbl

[85] P. L. Duren, Univalent functions, Grundlehren Math. Wiss., 259, Springer-Verlag, New York, 1983, xiv+382 pp. | MR | Zbl

[86] Ch. Pommerenke, Boundary behaviour of conformal maps, Grundlehren Math. Wiss., 299, Springer-Verlag, Berlin, 1992, x+300 pp. | MR | Zbl

[87] G. Szegő, “Über einen Satz des Herrn Serge Bernstein”, Schriften Königsberg. Gel. Ges., 5 (1928), 59–70 | Zbl

[88] V. K. Jain, “Generalization of certain well known inequalities for polynomials”, Glas. Mat. Ser. III, 32(52):1 (1997), 45–51 | MR | Zbl

[89] A. Aziz, W. M. Shah, “Inequalities for the polar derivative of a polynomial”, Indian J. Pure Appl. Math., 29:2 (1998), 163–173 | MR | Zbl

[90] P. J. O'Hara, R. S. Rodriguez, “Some properties of self-inversive polynomials”, Proc. Amer. Math. Soc., 44:2 (1974), 331–335 | MR | Zbl

[91] A. Aziz, B. A. Zargar, “Some inequalities for self-reciprocal polynomials”, Indian J. Pure Appl. Math., 27:8 (1996), 791–794 | MR | Zbl

[92] V. K. Jain, “Inequalities for polynomials satisfying $p(z)\equiv z^np(1/z)$. III”, J. Indian. Math. Soc. (N.S.), 62:1-4 (1996), 1–4 | MR | Zbl

[93] M. A. Malik, “On the derivative of polynomial”, J. London Math. Soc. (2), 1 (1969), 57–60 | DOI | MR | Zbl

[94] G. Pólya, G. Szegő, Aufgaben und Lehrsätze aus der Analysis, v. I, Grundlehren Math. Wiss., 19, Reihen, Integralrechnung, Funktionentheorie, Dritte berichtigte Auflage, Springer-Verlag, Berlin–New York, 1964, xvi+338 pp. | MR | MR | Zbl

[95] V. I. Smirnov, “Sur quelques polynômes aux propriétés extrémales”, Zap. Khark. Matem. obsch-va, 4:2 (1928), 69–72 | Zbl

[96] M. A. Malik, M. C. Vong, “Inequalities concerning the derivative of polynomials”, Rend. Circ. Mat. Palermo (2), 34:3 (1985), 422–426 | DOI | MR | Zbl

[97] V. I. Smirnov, N. A. Lebedev, Konstruktivnaya teoriya funktsii kompleksnogo peremennogo, Nauka, M.–L., 1964, 438 pp. | MR | Zbl

[98] N. A. Lebedev, “Nekotorye otsenki dlya funktsii, regulyarnykh i odnolistnykh v kruge”, Vestn. Leningr. un-ta. Ser. matem., fiz., khim., 10:11 (1955), 3–21 | MR | Zbl

[99] S. N. Bernshtein, Sobranie sochinenii, v. 1, Konstruktivnaya teoriya funktsii (1905–1930), Izd-vo AN SSSR, M., 1952, 581 pp. | MR | Zbl

[100] P. Turan, “Über die Ableitung von Polynomen”, Compositio Math., 7 (1939), 89–95 | MR | Zbl

[101] Z. Nehari, “Some inequalities in the theory of functions”, Trans. Amer. Math. Soc., 75:2 (1953), 256–286 | DOI | MR | Zbl

[102] N. A. Lebedev, Printsip ploschadei v teorii odnolistnykh funktsii, Nauka, M., 1975, 336 pp. | MR | Zbl

[103] D. V. Prokhorov, Reachable set methods in extremal problems for univalent functions, Saratov Univ. Publ. House, Saratov, 1993, 228 pp. | MR | Zbl

[104] V. A. Markov', O funktsiyakh', naimenѣe uklonyayuschikhsya ot' nulya v' dannom' promezhutkѣ, SPb., 1892, 117 pp.

[105] J. Erőd, “Bizonyos polinomok mazimumának”, Mat. Fiz. Lapok, 46 (1939), 58–83 | Zbl

[106] H. Siejka, O. Tammi, “On estimating the inverse coefficients for meromorphic univalent functions omitting a disk”, Ann. Acad. Sci. Fenn. Ser. A I Math., 12:1 (1987), 85–93 | MR | Zbl

[107] Ch. Pommerenke, A. Vasil'ev, “Angular derivatives of bounded univalent functions and extremal partitions of the unit disk”, Pacific J. Math., 206:2 (2002), 425–450 | DOI | MR | Zbl

[108] Ya. L. Geronimus, Teoriya ortogonalnykh mnogochlenov, GITTL, M.–L., 1950, 164 pp. | MR

[109] V. I. Lebedev, Funktsionalnyi analiz i vychislitelnaya matematika, izd. 4-e, ispr., Fizmatlit, M., 2000, 295 pp. | Zbl

[110] M. A. Lachance, “Bernstein and Markov inequalities for constrained polynomials”, Rational approximation and interpolation (Tampa, FL, 1983), Lecture Notes in Math., 1105, Springer, Berlin, 1984, 125–135 | DOI | MR | Zbl

[111] Q. I. Rahman, “On a problem of Turán about polynomials with curved majorants”, Trans. Amer. Math. Soc., 163 (1972), 447–455 | MR | Zbl

[112] G. Pólya, G. Szegő, Isoperimetric inequalties in mathematical physics, Ann. of Math. Stud., 27, Princeton Univ. Press, Princeton, NJ, 1951, xvi+279 pp. | MR | MR | Zbl | Zbl

[113] W. K. Hayman, Multivalent functions, Cambridge Tracts in Math., 110, 2nd ed., Cambridge Univ. Press, Cambridge, 1994, xii+263 pp. | DOI | MR | Zbl

[114] V. N. Dubinin, “Asymptotics of the module of a degenerating condenser and some of their applications”, J. Math. Sci. (N. Y.), 95:3 (1999), 2209–2220 | DOI | MR | Zbl

[115] V. N. Dubinin, L. V. Kovalev, “The reduced module of the complex sphere”, J. Math. Sci. (N. Y.), 105:4 (2001), 2165–2179 | DOI | MR | Zbl

[116] D. Tischler, “Critical points and values of complex polynomials”, J. Complexity, 5:4 (1989), 438–456 | DOI | MR | Zbl

[117] S. Smale, “The fundamental theorem of algebra and complexity theory”, Bull. Amer. Math. Soc. (N.S.), 4:1 (1981), 1–36 | DOI | MR | Zbl

[118] A. F. Beardon, D. Minda, T. W. Ng, “Smale's mean value conjecture and the hyperbolic metric”, Math. Ann., 322:4 (2002), 623–632 | DOI | MR | Zbl

[119] V. N. Dubinin, “Coverings of vertical segments under a conformal mapping”, Math. Notes, 28:1 (1980), 476–480 | DOI | MR | Zbl

[120] A. Eremenko, “A Markov-type inequality for arbitrary plane continua”, Proc. Amer. Math. Soc., 135:5 (2007), 1505–1510 | DOI | MR | Zbl

[121] N. S. Landkof, Osnovy sovremennoi teorii potentsiala, Nauka, M., 1966, 515 pp. | MR | Zbl

[122] G. Pólya, “Beitrag zur Verallgemeinerung des Verzerrungssatzes auf mehrfach Zusammenhängende Gebiete”, S. B. Preuss. Akad. Wiss., 1928, 228–232 | Zbl

[123] G. V. Kuz'mina, “Methods of geometric function theory. I”, St. Petersburg Math. J., 9:3 (1998), 455–507 ; Р“. Р’. РљСѓР·СЊРјРёРЅР°, “РњРμтоды РіРμРѕРјРμтричРμСЃРєРѕРNo С‚РμРѕСЂРёРё функциРNo. II”, АлгРμР±СЂР° Рё анализ, 9:5 (1997), 1–50 | MR | MR | Zbl | Zbl

[124] G. V. Kuz'mina, “Methods of geometric function theory. II”, St. Petersburg Math. J., 9:5 (1998), 889–930 | MR | MR | Zbl | Zbl

[125] I. Schur, “Über die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit ganzzahligen Koeffizienten”, Math. Z., 1:4 (1918), 377–402 | DOI | MR | Zbl