Methods of geometric function theory in classical and modern problems for polynomials
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 67 (2012) no. 4, pp. 599-684

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper gives a survey of classical and modern theorems on polynomials, proved using methods of geometric function theory. Most of the paper is devoted to results of the author and his students, established by applying majorization principles for holomorphic functions, the theory of univalent functions, the theory of capacities, and symmetrization. Auxiliary results and the proofs of some of the theorems are presented. Bibliography: 124 titles.
Keywords: majorization principles, Schwarz's lemma, capacities, univalent functions, symmetrization, inequalities, polynomials, critical points, critical values, rational functions.
@article{RM_2012_67_4_a0,
     author = {V. N. Dubinin},
     title = {Methods of geometric function theory in classical and modern problems for polynomials},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {599--684},
     publisher = {mathdoc},
     volume = {67},
     number = {4},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2012_67_4_a0/}
}
TY  - JOUR
AU  - V. N. Dubinin
TI  - Methods of geometric function theory in classical and modern problems for polynomials
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2012
SP  - 599
EP  - 684
VL  - 67
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RM_2012_67_4_a0/
LA  - en
ID  - RM_2012_67_4_a0
ER  - 
%0 Journal Article
%A V. N. Dubinin
%T Methods of geometric function theory in classical and modern problems for polynomials
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2012
%P 599-684
%V 67
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RM_2012_67_4_a0/
%G en
%F RM_2012_67_4_a0
V. N. Dubinin. Methods of geometric function theory in classical and modern problems for polynomials. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 67 (2012) no. 4, pp. 599-684. http://geodesic.mathdoc.fr/item/RM_2012_67_4_a0/