@article{RM_2012_67_4_a0,
author = {V. N. Dubinin},
title = {Methods of geometric function theory in classical and modern problems for polynomials},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {599--684},
year = {2012},
volume = {67},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2012_67_4_a0/}
}
TY - JOUR AU - V. N. Dubinin TI - Methods of geometric function theory in classical and modern problems for polynomials JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2012 SP - 599 EP - 684 VL - 67 IS - 4 UR - http://geodesic.mathdoc.fr/item/RM_2012_67_4_a0/ LA - en ID - RM_2012_67_4_a0 ER -
V. N. Dubinin. Methods of geometric function theory in classical and modern problems for polynomials. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 67 (2012) no. 4, pp. 599-684. http://geodesic.mathdoc.fr/item/RM_2012_67_4_a0/
[1] G. V. Milovanović, D. S. Mitrinović, Th. M. Rassias, Topics in polynomials: extremal problems, inequalities, zeros, World Scientific Publishing Co., Inc., River Edge, NJ, 1994, xiv+821 pp. | MR | Zbl
[2] P. Borwein, T. Erdélyi, Polynomials and polynomial inequalities, Grad. Texts in Math., 161, Springer-Verlag, New York, 1995, x+480 pp. | MR | Zbl
[3] Q. I. Rahman, G. Schmeisser, “Analytic theory of polynomials”, London Math. Soc. Monogr. (N.S.), 26, The Clarendon Press, Oxford; Oxford Univ. Press, 2002, xiv+742 pp. | MR | Zbl
[4] T. Sheil-Small, Complex polynomials, Cambridge Stud. Adv. Math., 75, Cambridge Univ. Press, Cambridge, 2002, xx+428 pp. | DOI | MR | Zbl
[5] V. V. Prasolov, Polynomials, Algorithms Comput. Math., 11, Springer-Verlag, Berlin, 2004, xiv+301 pp. | MR | Zbl
[6] A. Bogatyrev, Extremal polynomials and Riemann surfaces, Springer Monogr. Math., Springer, Berlin, 2012, xxv+150 pp. | MR | Zbl
[7] V. N. Dubinin, “Distortion theorems for polynomials on a circle”, Sb. Math., 191:12 (2000), 1797–1807 | DOI | MR | Zbl
[8] V. N. Dubinin, “Conformal mappings and inequalities for algebraic polynomials”, St. Petersburg Math. J., 13:5 (2002), 717–737 | MR | Zbl
[9] V. N. Dubinin, “On an application of conformal maps to inequalities for rational functions”, Izv. Math., 66:2 (2002), 285–297 | DOI | MR | Zbl
[10] V. N. Dubinin, “Conformal mappings and inequalities for algebraic polynomials. II”, J. Math. Sci. (N. Y.), 129:3 (2005), 3823–3834 | DOI | MR | Zbl
[11] V. N. Dubinin, “Schwarz's lemma and estimates of coefficients for regular functions with free domain of definition”, Sb. Math., 196:11 (2005), 1605–1625 | DOI | MR | Zbl
[12] V. N. Dubinin, “Polynomials with critical values on intervals”, Math. Notes, 78:6 (2005), 768–772 | DOI | MR | Zbl
[13] V. N. Dubinin, “Inequalities for critical values of polynomials”, Sb. Math., 197:8 (2006), 1167–1176 | DOI | MR | Zbl
[14] V. N. Dubinin, “Lemniscates and inequalities for the logarithmic capacities of continua”, Math. Notes, 80:1-2 (2006), 31–35 | DOI | MR | Zbl
[15] V. N. Dubinin, “Applications of the Schwarz lemma to inequalities for entire functions with constraints on zeros”, J. Math. Sci. (N. Y.), 143:3 (2007), 3069–3076 | DOI | MR | Zbl
[16] V. N. Dubinin, “Majorization principles for meromorphic functions”, Math. Notes, 84:5-6 (2008), 751–755 | DOI | MR | Zbl
[17] V. N. Dubinin, “On the lemniscate components containing no critical points of a polynomial except for its zeros”, J. Math. Sci. (N. Y.), 178:2 (2011), 158–162 | DOI | MR
[18] V. N. Dubinin, “On the finite-increment theorem for complex polynomials”, Math. Notes, 88:5-6 (2010), 647–654 | DOI | MR | Zbl
[19] V. N. Dubinin, “K teoremam iskazheniya dlya algebraicheskikh polinomov”, Dalnevost. matem. zhurn., 11:1 (2011), 28–36 | MR
[20] V. N. Dubinin, “Lower bound for the discrete norm of a polynomial on the circle”, Math. Notes, 90:1-2 (2011), 284–287 | DOI | MR | Zbl
[21] V. N. Dubinin, “Novaya versiya krugovoi simmetrizatsii s prilozheniyami k $p$-listnym funktsiyam”, Matem. sb., 203:7 (2012), 79–94
[22] V. N. Dubinin, “Reduced modules and inequalities for polynomials”, J. Math. Sci. (N. Y.), 110:6 (2002), 3070–3077 | DOI | MR | Zbl
[23] V. N. Dubinin, A. V. Olesov, “Application of conformal mappings to inequalities for polynomials”, J. Math. Sci. (N. Y.), 122:6 (2004), 3630–3640 | DOI | MR | Zbl
[24] V. N. Dubinin, S. I. Kalmykov, “Ekstremalnye svoistva polinomov Chebyshëva”, Dalnevost. matem. zhurn., 5:2 (2004), 169–177
[25] V. N. Dubinin, S. I. Kalmykov, “A majoration principle for meromorphic functions”, Sb. Math., 198:12 (2007), 1737–1745 | DOI | MR | Zbl
[26] V. Dubinin, T. Sugawa, “Dual mean value problem for complex polynomials”, Proc. Japan. Acad. Ser. A Math. Sci., 85:9 (2009), 135–137 | DOI | MR | Zbl
[27] V. N. Dubinin, D. A. Kirillova, “Nekotorye primeneniya ekstremalnykh razbienii v geometricheskoi teorii funktsii”, Dalnevost. matem. zhurn., 10:2 (2010), 130–152 | MR
[28] V. N. Dubinin, S. I. Kalmykov, “On polynomials with constraints on circular arcs”, J. Math. Sci. (N. Y.), 184 (2012), 703–708 | DOI | MR
[29] S. I. Kalmykov, “Covering theorems for polynomials with curved majorants on two intervals”, J. Math. Sci. (N. Y.), 178:2 (2011), 170–177 | DOI | MR
[30] S. I. Kalmykov, “Polynomials with curved majorants on two segments”, Russian Math. (Iz. VUZ), 53:10 (2009), 64–67 | DOI | MR | Zbl
[31] S. I. Kalmykov, “An estimate for the modulus of a rational function”, J. Math. Sci. (N. Y.), 166:2 (2010), 186–190 | DOI | MR
[32] S. I. Kalmykov, “Majoration principles and some inequalities for polynomials and rational functions with prescribed poles”, J. Math. Sci. (N. Y.), 157:4 (2009), 623–631 | DOI | MR | Zbl
[33] A. V. Olesov, “Differential inequalities for algebraic polynomials”, Siberian Math. J., 51:4 (2010), 706–711 | DOI | MR | Zbl
[34] A. V. Olesov, “Application of conformal mappings to inequalities for trigonometric polynomials”, Math. Notes, 76:3-4 (2004), 368–378 | DOI | MR | Zbl
[35] A. V. Olesov, “Inequalities for entire functions of finite degree and polynomials”, J. Math. Sci. (N. Y.), 133:6 (2006), 1704–1717 | DOI | MR | Zbl
[36] A. V. Olesov, “Inequalities for majorizing analytic functions”, J. Math. Sci. (N. Y.), 133:6 (2006), 1693–1703 | DOI | MR | Zbl
[37] V. N. Dubinin, “Symmetrization in the geometric theory of functions of a complex variable”, Russian Math. Surveys, 49:1 (1994), 1–79 | DOI | MR | Zbl
[38] V. N. Dubinin, Emkosti kondensatorov i simmetrizatsiya v geometricheskoi teorii funktsii kompleksnogo peremennogo, Dalnauka, Vladivostok, 2009, 390 pp.
[39] G. M. Goluzin, Geometricheskaya teoriya funktsii kompleksnogo peremennogo, 2-e izd., Nauka, M., 1966, 628 pp. | MR | Zbl
[40] K. Dochev, “Some extremal properties of polynomials”, Soviet Math. Dokl., 4 (1963), 1704–1706 | MR | Zbl
[41] R. Duffin, A. C. Schaeffer, “Some properties of functions of exponential type”, Bull. Amer. Math. Soc., 44:4 (1938), 236–240 | DOI | MR | Zbl
[42] T. Sheil-Small, “An inequality for the modulus of a polynomial evaluated at the roots of unity”, Bull. Lond. Math. Soc., 40:6 (2008), 956–964 | DOI | MR | Zbl
[43] E. Rakhmanov, B. Shekhtman, “On discrete norms of polynomials”, J. Approx. Theory, 139:1-2 (2006), 2–7 | DOI | MR | Zbl
[44] P. Borwein, T. Erdélyi, J. Zhang, “Chebyshev polynomials and Markov–Bernstein type inequalities for rational spaces”, J. London Math. Soc. (2), 50:3 (1994), 501–519 | DOI | MR | Zbl
[45] P. Borwein, T. Erdélyi, “Sharp extensions of Bernstein's inequality to rational spaces”, Mathematika, 43:2 (1996), 413–423 | DOI | MR | Zbl
[46] X. Li, R. N. Mohapatra, R. S. Rodriguez, “Bernstein-type inequalities for rational functions with prescribed poles”, J. London Math. Soc. (2), 51:3 (1995), 523–531 | DOI | MR | Zbl
[47] R. Jones, X. Li, R. N. Mohapatra, R. S. Rodrigues, “On the Bernstein inequality for rational functions with a prescribed zero”, J. Approx. Theory, 95:3 (1998), 476–496 | DOI | MR | Zbl
[48] X. Li, “Integral formulas and inequalities for rational functions”, J. Math. Anal. Appl., 211:2 (1997), 386–394 | DOI | MR | Zbl
[49] A. Aziz, W. M. Shah, “Some refinements of Bernstein-type inequalities for rational functions”, Glas. Mat. Ser. III, 32(52):1 (1997), 29–37 | MR | Zbl
[50] G. Min, “Inequalities for rational functions with prescribed poles”, Canad. J. Math., 50:1 (1998), 152–166 | DOI | MR | Zbl
[51] V. N. Rusak, Ratsionalnye funktsii kak apparat priblizheniya, Izd-vo BGU, Minsk, 1979, 174 pp. | MR
[52] V. S. Videnskii, “Nekotorye otsenki proizvodnykh ot ratsionalnykh drobei”, Izv. RAN SSSR. Ser. matem., 26:3 (1962), 415–426 | MR | Zbl
[53] R. Osserman, “A sharp Schwarz inequality on the boundary”, Proc. Amer. Math. Soc., 128:12 (2000), 3513–3517 | DOI | MR | Zbl
[54] V. N. Dubinin, “The Schwarz inequality on the boundary for functions regular in the disk”, J. Math. Sci. (N. Y.), 122:6 (2004), 3623–3629 | DOI | MR | Zbl
[55] A. Yu. Solynin, “The boundary distortion and extremal problems in certain classes of univalent functions”, J. Math. Sci. (N. Y.), 79:5 (1996), 1341–1358 | DOI | MR | Zbl | Zbl
[56] H. P. Boas, “Julius and Julia: mastering the art of the Schwarz lemma”, Amer. Math. Monthly, 117:9 (2010), 770–785 | DOI | MR | Zbl
[57] S. G. Krantz, “The Schwarz lemma at the boundary”, Complex Var. Elliptic Equ., 56:5 (2011), 455–468 | DOI | MR | Zbl
[58] A. Aziz, Q. G. Mohammad, “Growth of polynomials with zeros outside a circle”, Proc. Amer. Math. Soc., 81:4 (1981), 549–553 | DOI | MR | Zbl
[59] N. C. Ankeny, T. J. Rivlin, “On a theorem of S. Bernstein”, Pacific J. Math., 5, Suppl. 2 (1955), 849–852 | MR | Zbl
[60] P. Turan, “Über die Ableitung von Polynomen”, Compositio Math., 7 (1939), 89–95 | MR | Zbl
[61] P. Pawlowski, “On the zeros of a polynomial and its derivatives”, Trans. Amer. Math. Soc., 350:11 (1998), 4461–4472 | DOI | MR | Zbl
[62] S. N. Bernshtein, Sobranie sochinenii, v. 2, Konstruktivnaya teoriya funktsii (1931–1953), Iz-vo AN SSSR, M., 1954, 627 pp. | MR | Zbl
[63] B. Ya. Levin, Lectures on entire functions, Transl. Math. Monog., 150, Amer. Math. Soc., Providence, RI, 1996, xvi+248 pp. | MR | Zbl
[64] R. Gardner, N. K. Govil, “Functions of exponential type not vanishing in a half-plane”, Analysis, 17:4 (1997), 395–402 | MR | Zbl
[65] N. K. Govil, M. A. Qazi, “On maximum modulus of polynomials and related entire functions with restricted zeros”, Math. Inequal. Appl., 5:1 (2002), 57–60 | DOI | MR | Zbl
[66] N. K. Govil, M. A. Qazi, Q. I. Rahman, “A new property of entire functions of exponential type not vanishing in a half-plane and applications”, Complex Var. Theory Appl., 48:11 (2003), 897–908 | DOI | MR | Zbl
[67] T. G. Genchev, “Inequalities for asymmetric entire functions of exponential type”, Soviet Math. Dokl., 19 (1978), 981–985 | MR | Zbl
[68] S. Stoilow, Teoria funcţiilor de o variabilă complexă, v. 2, Funcţii armonice. Suprafeţe Riemanniene, Editura Academiei Republicii Populare Romîne, Bucharest, 1958, 378 pp. | MR | Zbl
[69] V. N. Dubinin, M. Vuorinen, “Robin functions and distortion theorems for regular mappings”, Math. Nachr., 283:11 (2010), 1589–1602 | DOI | MR | Zbl
[70] I. P. Mityuk, “The symmetrization principle for multiply connected domains”, Soviet Math. Dokl., 5 (1964), 928–930 | Zbl
[71] I. P. Mityuk, “Printsip simmetrizatsii dlya mnogosvyaznykh oblastei i nekotorye ego primeneniya”, Ukr. matem. zhurn., 17:4 (1965), 46–54 | Zbl
[72] I. P. Mityuk, Simmetrizatsionnye metody i ikh primenenie v geometricheskoi teorii funktsii. Vvedenie v simmetrizatsionnye metody, Izd-vo Kubansk. gos. un-ta, Krasnodar, 1980, 90 pp.
[73] I. P. Mityuk, Primenenie simmetrizatsionnykh metodov v geometricheskoi teorii funktsii, Izd-vo Kubansk. gos. un-ta, Krasnodar, 1985, 94 pp.
[74] I. P. Mityuk, “Otsenki vnutrennego radiusa (emkosti) nekotoroi oblasti (kondensatora)”, Izv. Severo-Kavkaz. nauchn. tsentra vyssh. shk. estestv. nauk, 43:3 (1983), 36–38 | MR | Zbl
[75] A. L. Lukashov, “Inequalities for the derivatives of rational functions on several intervals”, Izv. Math., 68:3 (2004), 543–565 | DOI | MR | Zbl
[76] A. L. Lukashov, “Estimates for derivatives of rational functions and the fourth Zolotarev problem”, St. Petersburg Math. J., 19:2 (2008), 253–259 | DOI | MR | Zbl
[77] S. V. Tyshkevich, “On Chebyshev polynomials on arcs of a circle”, Math. Notes, 81:6 (2007), 851–853 | DOI | MR | Zbl
[78] L. S. Maergoĭz, N. N. Rybakova, “Chebyshev polynomials with zeros lying on a circular arc”, Dokl. Math., 79:3 (2009), 319–321 | DOI | MR | Zbl
[79] A. L. Lukashov, S. V. Tyshkevich, “Extremal polynomials on arcs of the circle with zeros on these arcs”, J. Contemp. Math. Anal., 44:3 (2009), 172–179 | DOI | MR | Zbl
[80] V. V. Arestov, A. S. Mendelev, “On trigonometric polynomials least deviating from zero”, Dokl. Math., 79:2 (2009), 280–283 | DOI | MR | Zbl
[81] V. S. Videnskii, “Extremal estimates for the derivative of a trigonometric polynomial on an interval shorter than its period”, Soviet Math. Dokl., 1 (1960), 5–8 | MR | Zbl
[82] J.-P. Thiran, C. Detaille, “Chebyshev polynomials on circular arcs in the complex plane”, Progress in approximation theory, Academic Press, Boston, MA, 1991, 771–786 | MR
[83] J. A. Jenkins, Univalent functions and conformal mapping, Ergeb. Math. Grenzgeb. Neue Folge, 18, Reihe: Moderne Funktionentheorie, Springer-Verlag, Berlin–Gottingen–Heidelberg, 1958, vi+169 pp. | MR | Zbl
[84] A. W. Goodman, Univalent functions, v. I, II, Tampa, FL, Mariner Publishing Co., Inc., 1983, xvii+246; xii+311 pp. | MR | Zbl
[85] P. L. Duren, Univalent functions, Grundlehren Math. Wiss., 259, Springer-Verlag, New York, 1983, xiv+382 pp. | MR | Zbl
[86] Ch. Pommerenke, Boundary behaviour of conformal maps, Grundlehren Math. Wiss., 299, Springer-Verlag, Berlin, 1992, x+300 pp. | MR | Zbl
[87] G. Szegő, “Über einen Satz des Herrn Serge Bernstein”, Schriften Königsberg. Gel. Ges., 5 (1928), 59–70 | Zbl
[88] V. K. Jain, “Generalization of certain well known inequalities for polynomials”, Glas. Mat. Ser. III, 32(52):1 (1997), 45–51 | MR | Zbl
[89] A. Aziz, W. M. Shah, “Inequalities for the polar derivative of a polynomial”, Indian J. Pure Appl. Math., 29:2 (1998), 163–173 | MR | Zbl
[90] P. J. O'Hara, R. S. Rodriguez, “Some properties of self-inversive polynomials”, Proc. Amer. Math. Soc., 44:2 (1974), 331–335 | MR | Zbl
[91] A. Aziz, B. A. Zargar, “Some inequalities for self-reciprocal polynomials”, Indian J. Pure Appl. Math., 27:8 (1996), 791–794 | MR | Zbl
[92] V. K. Jain, “Inequalities for polynomials satisfying $p(z)\equiv z^np(1/z)$. III”, J. Indian. Math. Soc. (N.S.), 62:1-4 (1996), 1–4 | MR | Zbl
[93] M. A. Malik, “On the derivative of polynomial”, J. London Math. Soc. (2), 1 (1969), 57–60 | DOI | MR | Zbl
[94] G. Pólya, G. Szegő, Aufgaben und Lehrsätze aus der Analysis, v. I, Grundlehren Math. Wiss., 19, Reihen, Integralrechnung, Funktionentheorie, Dritte berichtigte Auflage, Springer-Verlag, Berlin–New York, 1964, xvi+338 pp. | MR | MR | Zbl
[95] V. I. Smirnov, “Sur quelques polynômes aux propriétés extrémales”, Zap. Khark. Matem. obsch-va, 4:2 (1928), 69–72 | Zbl
[96] M. A. Malik, M. C. Vong, “Inequalities concerning the derivative of polynomials”, Rend. Circ. Mat. Palermo (2), 34:3 (1985), 422–426 | DOI | MR | Zbl
[97] V. I. Smirnov, N. A. Lebedev, Konstruktivnaya teoriya funktsii kompleksnogo peremennogo, Nauka, M.–L., 1964, 438 pp. | MR | Zbl
[98] N. A. Lebedev, “Nekotorye otsenki dlya funktsii, regulyarnykh i odnolistnykh v kruge”, Vestn. Leningr. un-ta. Ser. matem., fiz., khim., 10:11 (1955), 3–21 | MR | Zbl
[99] S. N. Bernshtein, Sobranie sochinenii, v. 1, Konstruktivnaya teoriya funktsii (1905–1930), Izd-vo AN SSSR, M., 1952, 581 pp. | MR | Zbl
[100] P. Turan, “Über die Ableitung von Polynomen”, Compositio Math., 7 (1939), 89–95 | MR | Zbl
[101] Z. Nehari, “Some inequalities in the theory of functions”, Trans. Amer. Math. Soc., 75:2 (1953), 256–286 | DOI | MR | Zbl
[102] N. A. Lebedev, Printsip ploschadei v teorii odnolistnykh funktsii, Nauka, M., 1975, 336 pp. | MR | Zbl
[103] D. V. Prokhorov, Reachable set methods in extremal problems for univalent functions, Saratov Univ. Publ. House, Saratov, 1993, 228 pp. | MR | Zbl
[104] V. A. Markov', O funktsiyakh', naimenѣe uklonyayuschikhsya ot' nulya v' dannom' promezhutkѣ, SPb., 1892, 117 pp.
[105] J. Erőd, “Bizonyos polinomok mazimumának”, Mat. Fiz. Lapok, 46 (1939), 58–83 | Zbl
[106] H. Siejka, O. Tammi, “On estimating the inverse coefficients for meromorphic univalent functions omitting a disk”, Ann. Acad. Sci. Fenn. Ser. A I Math., 12:1 (1987), 85–93 | MR | Zbl
[107] Ch. Pommerenke, A. Vasil'ev, “Angular derivatives of bounded univalent functions and extremal partitions of the unit disk”, Pacific J. Math., 206:2 (2002), 425–450 | DOI | MR | Zbl
[108] Ya. L. Geronimus, Teoriya ortogonalnykh mnogochlenov, GITTL, M.–L., 1950, 164 pp. | MR
[109] V. I. Lebedev, Funktsionalnyi analiz i vychislitelnaya matematika, izd. 4-e, ispr., Fizmatlit, M., 2000, 295 pp. | Zbl
[110] M. A. Lachance, “Bernstein and Markov inequalities for constrained polynomials”, Rational approximation and interpolation (Tampa, FL, 1983), Lecture Notes in Math., 1105, Springer, Berlin, 1984, 125–135 | DOI | MR | Zbl
[111] Q. I. Rahman, “On a problem of Turán about polynomials with curved majorants”, Trans. Amer. Math. Soc., 163 (1972), 447–455 | MR | Zbl
[112] G. Pólya, G. Szegő, Isoperimetric inequalties in mathematical physics, Ann. of Math. Stud., 27, Princeton Univ. Press, Princeton, NJ, 1951, xvi+279 pp. | MR | MR | Zbl | Zbl
[113] W. K. Hayman, Multivalent functions, Cambridge Tracts in Math., 110, 2nd ed., Cambridge Univ. Press, Cambridge, 1994, xii+263 pp. | DOI | MR | Zbl
[114] V. N. Dubinin, “Asymptotics of the module of a degenerating condenser and some of their applications”, J. Math. Sci. (N. Y.), 95:3 (1999), 2209–2220 | DOI | MR | Zbl
[115] V. N. Dubinin, L. V. Kovalev, “The reduced module of the complex sphere”, J. Math. Sci. (N. Y.), 105:4 (2001), 2165–2179 | DOI | MR | Zbl
[116] D. Tischler, “Critical points and values of complex polynomials”, J. Complexity, 5:4 (1989), 438–456 | DOI | MR | Zbl
[117] S. Smale, “The fundamental theorem of algebra and complexity theory”, Bull. Amer. Math. Soc. (N.S.), 4:1 (1981), 1–36 | DOI | MR | Zbl
[118] A. F. Beardon, D. Minda, T. W. Ng, “Smale's mean value conjecture and the hyperbolic metric”, Math. Ann., 322:4 (2002), 623–632 | DOI | MR | Zbl
[119] V. N. Dubinin, “Coverings of vertical segments under a conformal mapping”, Math. Notes, 28:1 (1980), 476–480 | DOI | MR | Zbl
[120] A. Eremenko, “A Markov-type inequality for arbitrary plane continua”, Proc. Amer. Math. Soc., 135:5 (2007), 1505–1510 | DOI | MR | Zbl
[121] N. S. Landkof, Osnovy sovremennoi teorii potentsiala, Nauka, M., 1966, 515 pp. | MR | Zbl
[122] G. Pólya, “Beitrag zur Verallgemeinerung des Verzerrungssatzes auf mehrfach Zusammenhängende Gebiete”, S. B. Preuss. Akad. Wiss., 1928, 228–232 | Zbl
[123] G. V. Kuz'mina, “Methods of geometric function theory. I”, St. Petersburg Math. J., 9:3 (1998), 455–507 ; Р“. Р’. РљСѓР·СЊРјРёРЅР°, “РњРμтоды РіРμРѕРјРμтричРμСЃРєРѕРNo С‚РμРѕСЂРёРё функциРNo. II”, АлгРμР±СЂР° Рё анализ, 9:5 (1997), 1–50 | MR | MR | Zbl | Zbl
[124] G. V. Kuz'mina, “Methods of geometric function theory. II”, St. Petersburg Math. J., 9:5 (1998), 889–930 | MR | MR | Zbl | Zbl
[125] I. Schur, “Über die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit ganzzahligen Koeffizienten”, Math. Z., 1:4 (1918), 377–402 | DOI | MR | Zbl