@article{RM_2012_67_3_a7,
author = {V. D. Volodin},
title = {Geometric realization of the $\gamma$-vectors of 2-truncated cubes},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {582--584},
year = {2012},
volume = {67},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2012_67_3_a7/}
}
V. D. Volodin. Geometric realization of the $\gamma$-vectors of 2-truncated cubes. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 67 (2012) no. 3, pp. 582-584. http://geodesic.mathdoc.fr/item/RM_2012_67_3_a7/
[1] N. Aisbett, Frankl–Füredi–Kalai inequalities on the $\gamma$-vectors of flag nestohedra, 2012, arXiv: 1203.4715
[2] V. M. Buchstaber, V. D. Volodin, Izv. Math., 75:6 (2011), 1107–1133 | DOI
[3] V. Buchstaber, V. Volodin, “Combinatorial 2-truncated cubes and applications”, Associahedra, Tamari lattices and related structures. Tamari Memorial Festschrift, Progr. Math., 299, eds. F. Müller-Hoissen, J. Pallo, J. Stasheff, Birkhäuser, Boston, MA, 2012, 161–186
[4] P. Frankl, Z. Füredi, G. Kalai, Math. Scand., 63:2 (1988), 169–178 | MR | Zbl
[5] A. Frohmader, Face vectors of flag complexes, 2006, arXiv: math/0605673
[6] Ś. R. Gal, Discrete Comput. Geom., 34:2 (2005), 269–284 | DOI | MR | Zbl
[7] M. A. Gorsky, Russian Math. Surveys, 65:6 (2010), 1178–1180 | DOI | MR
[8] E. Nevo, T. K. Peterson, Discrete Comput. Geom., 45:3 (2011), 503–521 | DOI | MR | Zbl
[9] G. M. Ziegler, Lectures on polytopes, Grad. Texts in Math., 152, Springer-Verlag, New York, 1995, x+370 pp. | MR | Zbl