Mots-clés : prime decomposition
@article{RM_2012_67_3_a1,
author = {S. V. Matveev},
title = {Roots and decompositions of three-dimensional topological objects},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {459--507},
year = {2012},
volume = {67},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2012_67_3_a1/}
}
S. V. Matveev. Roots and decompositions of three-dimensional topological objects. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 67 (2012) no. 3, pp. 459-507. http://geodesic.mathdoc.fr/item/RM_2012_67_3_a1/
[1] M. H. A. Newman, “On theories with a combinatorial definition of "equivalence"”, Ann. of Math. (2), 43:2 (1942), 223–243 | DOI | MR | Zbl
[2] T. Becker, V. Weispfenning, Gröbner bases. A computational approach to commutative algebra, Grad. Texts in Math., 141, Springer-Verlag, New York, 1993, xxii+574 pp. | DOI | MR | Zbl
[3] G. M. Bergman, “The diamond lemma for ring theory”, Adv. in Math., 29:2 (1978), 178–218 | DOI | MR | Zbl
[4] L. A. Bokut', “Embeddings into simple associative algebras”, Algebra Logic, 15 (1977), 73–90 | MR | Zbl | Zbl
[5] A. I. Shirshov, “Nekotorye algoritmicheskie voprosy dlya algebr Li”, Sib. matem. zhurn., 3:2 (1962), 292–296 | MR | Zbl
[6] H. Schubert, “Die eindeutige Zerlegbarkeit eines Knotens in Primknoten”, S.-B. Heidelberger Akad. Wiss. Math.-Nat. Kl., 1949, no. 3, 57–104 | MR | Zbl
[7] W. Jaco, P. B. Shalen, “A new decomposition theorem for irreducible sufficiently large 3-manifolds”, Algebraic and geometric topology (Stanford Univ., Stanford, CA, 1976), Part 2, Proc. Sympos. Pure Math., 32, Amer. Math. Soc., Providence, RI, 1978, 71–84 | MR | Zbl
[8] J. Milnor, “A unique factorisation theorem for 3-manifolds”, Amer. J. Math., 84 (1962), 1–7 | DOI | MR | Zbl
[9] H. Kneser, “Geschlossene Flächen in dreidimensionalen Mannigfaltigkeiten”, J. Dtsch. Math. Verein., 38 (1929), 248–260 | Zbl
[10] W. Haken, “Theorie der Normalflächen”, Acta Math., 105:3-4 (1961), 245–375 | DOI | MR | Zbl
[11] S. Matveev, Algorithmic topology and classification of 3-manifolds, Algorithms Comput. Math., 9, Springer-Verlag, Berlin, 2003, xii+478 pp. | MR | Zbl
[12] C. Hog-Angeloni, S. Matveev, “Roots in 3-manifold topology”, The Zieschang Gedenkschrift, Geom. Topol. Monogr., 14, Geometry Topology Publications, Coventry, 2008, 295–319 | DOI | MR | Zbl
[13] G. A. Swarup, “Some properties of 3-manifolds with boundary”, Quart. J. Math. Oxford Ser. (2), 21:1 (1970), 1–23 | DOI | MR | Zbl
[14] F. Bonahon, “Cobordism of automorphisms of surfaces”, Ann. Sci. École Norm. Sup. (4), 16:2 (1983), 237–270 | MR | Zbl
[15] K. Miyazaki, “Conjugation and prime decomposition of knots in closed, oriented 3-manifolds”, Trans. Amer. Math. Soc., 313:2 (1989), 785–804 | DOI | MR | Zbl
[16] S. Matveev, V. Turaev, “A semigroup of theta-curves in 3-manifolds”, Mosc. Math. J., 11:4 (2011), 805–814
[17] S. V. Matveev, “On prime decompositions of knotted graphs and orbifolds”, Atti Semin. Mat. Fis. Univ. Modena Reggio Emilia, 57 (2010), 89–96 | Zbl
[18] M. Boileau, S. Maillot, J. Porti, Three-dimensional orbifolds and their geometric structures, Panor. Syntheses, 15, Société Mathématique de France, Paris, 2003, viii+167 pp. | MR | Zbl
[19] C. Petronio, “Spherical splitting of 3-orbifolds”, Math. Proc. Cambridge Philos. Soc., 142:2 (2007), 269–287 | DOI | MR | Zbl
[20] W. P. Thurston, Three-dimensional geometry and topology, v. 1, Princeton Math. Ser., 35, Princeton University Press, Princeton, NJ, 1997, x+311 pp. | MR | Zbl
[21] G. Kuperberg, “What is a virtual link?”, Algebr. Geom. Topol., 3 (2003), 587–591 | DOI | MR | Zbl
[22] L. H. Kauffman, V. O. Manturov, “Virtual knots and links”, Proc. Steklov Inst. Math., 252 (2006), 104–121 | DOI | MR
[23] L. H. Kauffman, “Virtual knot theory”, European J. Combin., 20:7 (1999), 663–690 | DOI | MR | Zbl
[24] S. V. Matveev, “Decomposition of homologically trivial knots in $F\times I$”, Dokl. Math., 82:1 (2010), 511–513 | Zbl
[25] V. O. Manturov, Teoriya uzlov, NITs “Regulyarnaya i khaoticheskaya dinamika”, M.–Izhevsk, 2005, 512 pp.
[26] T. Kishino, Sh. Satoh, “A note on classical knot polynomials”, J. Knot Theory Ramifications, 13:7 (2004), 845–856 | DOI | MR | Zbl
[27] H. A. Dye, L. H. Kauffman, “Minimal surface representations of virtual knots and links”, Algebr. Geom. Topol., 5 (2005), 509–535 | DOI | MR | Zbl
[28] F. G. Korablev, S. V. Matveev, “Reduction of knots in thickened surfaces and virtual knots”, Dokl. Math., 83:2 (2011), 262–264 | MR | Zbl
[29] F. G. Korablev, “Edinstvennost kornei uzlov v $F\times I$ i primarnye razlozheniya virtualnykh uzlov”, Tr. IMM UrO RAN, 17, no. 4, 2011, 160–175
[30] T. Motohashi, “A prime decomposition theorem for handcuff graphs in $S^3$”, Topology Appl., 154:18 (2007), 3135–3139 | DOI | MR | Zbl
[31] K. Wolcott, “The knotting of theta curves and other graphs in $S^3$”, Geometry and topology (Athens, GA, 1985), Lecture Notes in Pure and Appl. Math., 105, Dekker, New York, 1987, 325–346 | MR | Zbl
[32] V. Turaev, “Knotoids”, Osaka J. Math., 49:1 (2012), 195–223
[33] S. Matveev, “Prime decomposition of knots in $T^2\times I$”, Topology Appl., 159:7 (2012), 1820–1824 | DOI