Roots and decompositions of three-dimensional topological objects
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 67 (2012) no. 3, pp. 459-507 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In 1942 M. H. A. Newman formulated and proved a simple lemma of great importance for various fields of mathematics, including algebra and the theory of Gröbner–Shirshov bases. Later it was called the Diamond Lemma, since its key construction was illustrated by a diamond-shaped diagram. In 2005 the author suggested a new version of this lemma suitable for topological applications. This paper gives a survey of results on the existence and uniqueness of prime decompositions of various topological objects: three-dimensional manifolds, knots in thickened surfaces, knotted graphs, three-dimensional orbifolds, and knotted theta-curves in three-dimensional manifolds. As it turned out, all these topological objects admit a prime decomposition, although it is not unique in some cases (for example, in the case of orbifolds). For theta-curves and knots of geometric degree 1 in a thickened torus, the algebraic structure of the corresponding semigroups can be completely described. In both cases the semigroups are quotients of free groups by explicit commutation relations. Bibliography: 33 titles.
Keywords: three-dimensional manifold, knot, virtual knot, orbifold.
Mots-clés : prime decomposition
@article{RM_2012_67_3_a1,
     author = {S. V. Matveev},
     title = {Roots and decompositions of three-dimensional topological objects},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {459--507},
     year = {2012},
     volume = {67},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2012_67_3_a1/}
}
TY  - JOUR
AU  - S. V. Matveev
TI  - Roots and decompositions of three-dimensional topological objects
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2012
SP  - 459
EP  - 507
VL  - 67
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/RM_2012_67_3_a1/
LA  - en
ID  - RM_2012_67_3_a1
ER  - 
%0 Journal Article
%A S. V. Matveev
%T Roots and decompositions of three-dimensional topological objects
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2012
%P 459-507
%V 67
%N 3
%U http://geodesic.mathdoc.fr/item/RM_2012_67_3_a1/
%G en
%F RM_2012_67_3_a1
S. V. Matveev. Roots and decompositions of three-dimensional topological objects. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 67 (2012) no. 3, pp. 459-507. http://geodesic.mathdoc.fr/item/RM_2012_67_3_a1/

[1] M. H. A. Newman, “On theories with a combinatorial definition of "equivalence"”, Ann. of Math. (2), 43:2 (1942), 223–243 | DOI | MR | Zbl

[2] T. Becker, V. Weispfenning, Gröbner bases. A computational approach to commutative algebra, Grad. Texts in Math., 141, Springer-Verlag, New York, 1993, xxii+574 pp. | DOI | MR | Zbl

[3] G. M. Bergman, “The diamond lemma for ring theory”, Adv. in Math., 29:2 (1978), 178–218 | DOI | MR | Zbl

[4] L. A. Bokut', “Embeddings into simple associative algebras”, Algebra Logic, 15 (1977), 73–90 | MR | Zbl | Zbl

[5] A. I. Shirshov, “Nekotorye algoritmicheskie voprosy dlya algebr Li”, Sib. matem. zhurn., 3:2 (1962), 292–296 | MR | Zbl

[6] H. Schubert, “Die eindeutige Zerlegbarkeit eines Knotens in Primknoten”, S.-B. Heidelberger Akad. Wiss. Math.-Nat. Kl., 1949, no. 3, 57–104 | MR | Zbl

[7] W. Jaco, P. B. Shalen, “A new decomposition theorem for irreducible sufficiently large 3-manifolds”, Algebraic and geometric topology (Stanford Univ., Stanford, CA, 1976), Part 2, Proc. Sympos. Pure Math., 32, Amer. Math. Soc., Providence, RI, 1978, 71–84 | MR | Zbl

[8] J. Milnor, “A unique factorisation theorem for 3-manifolds”, Amer. J. Math., 84 (1962), 1–7 | DOI | MR | Zbl

[9] H. Kneser, “Geschlossene Flächen in dreidimensionalen Mannigfaltigkeiten”, J. Dtsch. Math. Verein., 38 (1929), 248–260 | Zbl

[10] W. Haken, “Theorie der Normalflächen”, Acta Math., 105:3-4 (1961), 245–375 | DOI | MR | Zbl

[11] S. Matveev, Algorithmic topology and classification of 3-manifolds, Algorithms Comput. Math., 9, Springer-Verlag, Berlin, 2003, xii+478 pp. | MR | Zbl

[12] C. Hog-Angeloni, S. Matveev, “Roots in 3-manifold topology”, The Zieschang Gedenkschrift, Geom. Topol. Monogr., 14, Geometry Topology Publications, Coventry, 2008, 295–319 | DOI | MR | Zbl

[13] G. A. Swarup, “Some properties of 3-manifolds with boundary”, Quart. J. Math. Oxford Ser. (2), 21:1 (1970), 1–23 | DOI | MR | Zbl

[14] F. Bonahon, “Cobordism of automorphisms of surfaces”, Ann. Sci. École Norm. Sup. (4), 16:2 (1983), 237–270 | MR | Zbl

[15] K. Miyazaki, “Conjugation and prime decomposition of knots in closed, oriented 3-manifolds”, Trans. Amer. Math. Soc., 313:2 (1989), 785–804 | DOI | MR | Zbl

[16] S. Matveev, V. Turaev, “A semigroup of theta-curves in 3-manifolds”, Mosc. Math. J., 11:4 (2011), 805–814

[17] S. V. Matveev, “On prime decompositions of knotted graphs and orbifolds”, Atti Semin. Mat. Fis. Univ. Modena Reggio Emilia, 57 (2010), 89–96 | Zbl

[18] M. Boileau, S. Maillot, J. Porti, Three-dimensional orbifolds and their geometric structures, Panor. Syntheses, 15, Société Mathématique de France, Paris, 2003, viii+167 pp. | MR | Zbl

[19] C. Petronio, “Spherical splitting of 3-orbifolds”, Math. Proc. Cambridge Philos. Soc., 142:2 (2007), 269–287 | DOI | MR | Zbl

[20] W. P. Thurston, Three-dimensional geometry and topology, v. 1, Princeton Math. Ser., 35, Princeton University Press, Princeton, NJ, 1997, x+311 pp. | MR | Zbl

[21] G. Kuperberg, “What is a virtual link?”, Algebr. Geom. Topol., 3 (2003), 587–591 | DOI | MR | Zbl

[22] L. H. Kauffman, V. O. Manturov, “Virtual knots and links”, Proc. Steklov Inst. Math., 252 (2006), 104–121 | DOI | MR

[23] L. H. Kauffman, “Virtual knot theory”, European J. Combin., 20:7 (1999), 663–690 | DOI | MR | Zbl

[24] S. V. Matveev, “Decomposition of homologically trivial knots in $F\times I$”, Dokl. Math., 82:1 (2010), 511–513 | Zbl

[25] V. O. Manturov, Teoriya uzlov, NITs “Regulyarnaya i khaoticheskaya dinamika”, M.–Izhevsk, 2005, 512 pp.

[26] T. Kishino, Sh. Satoh, “A note on classical knot polynomials”, J. Knot Theory Ramifications, 13:7 (2004), 845–856 | DOI | MR | Zbl

[27] H. A. Dye, L. H. Kauffman, “Minimal surface representations of virtual knots and links”, Algebr. Geom. Topol., 5 (2005), 509–535 | DOI | MR | Zbl

[28] F. G. Korablev, S. V. Matveev, “Reduction of knots in thickened surfaces and virtual knots”, Dokl. Math., 83:2 (2011), 262–264 | MR | Zbl

[29] F. G. Korablev, “Edinstvennost kornei uzlov v $F\times I$ i primarnye razlozheniya virtualnykh uzlov”, Tr. IMM UrO RAN, 17, no. 4, 2011, 160–175

[30] T. Motohashi, “A prime decomposition theorem for handcuff graphs in $S^3$”, Topology Appl., 154:18 (2007), 3135–3139 | DOI | MR | Zbl

[31] K. Wolcott, “The knotting of theta curves and other graphs in $S^3$”, Geometry and topology (Athens, GA, 1985), Lecture Notes in Pure and Appl. Math., 105, Dekker, New York, 1987, 325–346 | MR | Zbl

[32] V. Turaev, “Knotoids”, Osaka J. Math., 49:1 (2012), 195–223

[33] S. Matveev, “Prime decomposition of knots in $T^2\times I$”, Topology Appl., 159:7 (2012), 1820–1824 | DOI