Sub- and supergradients of envelopes, semicontinuous closures, and limits of sequences of functions
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 67 (2012) no. 2, pp. 345-373
Voir la notice de l'article provenant de la source Math-Net.Ru
Envelopes $\sup_{\gamma\in\Gamma}f_{\gamma}(x)$ or $\inf_{\gamma\in\Gamma}f_{\gamma}(x)$ of parametric families of functions are typical non-differentiable functions arising in non-smooth analysis, optimization theory, control theory, the theory of generalized solutions of first-order partial differential equations, and other applications. In this survey formulae are obtained for sub- and supergradients of envelopes of lower semicontinuous functions, their corresponding semicontinuous closures, and limits and $\Gamma$-limits of sequences of functions. The unified method of derivation of these formulae for semicontinuous functions is based on the use of multidirectional mean-value inequalities for sets and non-smooth functions. These results are used to prove generalized versions of the Jung and Helly theorems for manifolds of non-positive curvature, to prove uniqueness of solutions of some optimization problems, and to get a new derivation of Stegall's well-known variational principle for smooth Banach spaces. Also, necessary conditions are derived for $\varepsilon$-maximizers of lower semicontinuous functions.
Bibliography: 47 titles.
Keywords:
non-linear functional analysis, non-smooth analysis, upper and lower envelopes, generalizations of the Jung, Helly, and Stegall theorems.
@article{RM_2012_67_2_a4,
author = {Yu. S. Ledyaev and J. S. Treiman},
title = {Sub- and supergradients of envelopes, semicontinuous closures, and limits of sequences of functions},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {345--373},
publisher = {mathdoc},
volume = {67},
number = {2},
year = {2012},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2012_67_2_a4/}
}
TY - JOUR AU - Yu. S. Ledyaev AU - J. S. Treiman TI - Sub- and supergradients of envelopes, semicontinuous closures, and limits of sequences of functions JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2012 SP - 345 EP - 373 VL - 67 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RM_2012_67_2_a4/ LA - en ID - RM_2012_67_2_a4 ER -
%0 Journal Article %A Yu. S. Ledyaev %A J. S. Treiman %T Sub- and supergradients of envelopes, semicontinuous closures, and limits of sequences of functions %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2012 %P 345-373 %V 67 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/RM_2012_67_2_a4/ %G en %F RM_2012_67_2_a4
Yu. S. Ledyaev; J. S. Treiman. Sub- and supergradients of envelopes, semicontinuous closures, and limits of sequences of functions. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 67 (2012) no. 2, pp. 345-373. http://geodesic.mathdoc.fr/item/RM_2012_67_2_a4/