@article{RM_2012_67_2_a4,
author = {Yu. S. Ledyaev and J. S. Treiman},
title = {Sub- and supergradients of envelopes, semicontinuous closures, and limits of sequences of functions},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {345--373},
year = {2012},
volume = {67},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2012_67_2_a4/}
}
TY - JOUR AU - Yu. S. Ledyaev AU - J. S. Treiman TI - Sub- and supergradients of envelopes, semicontinuous closures, and limits of sequences of functions JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2012 SP - 345 EP - 373 VL - 67 IS - 2 UR - http://geodesic.mathdoc.fr/item/RM_2012_67_2_a4/ LA - en ID - RM_2012_67_2_a4 ER -
%0 Journal Article %A Yu. S. Ledyaev %A J. S. Treiman %T Sub- and supergradients of envelopes, semicontinuous closures, and limits of sequences of functions %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2012 %P 345-373 %V 67 %N 2 %U http://geodesic.mathdoc.fr/item/RM_2012_67_2_a4/ %G en %F RM_2012_67_2_a4
Yu. S. Ledyaev; J. S. Treiman. Sub- and supergradients of envelopes, semicontinuous closures, and limits of sequences of functions. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 67 (2012) no. 2, pp. 345-373. http://geodesic.mathdoc.fr/item/RM_2012_67_2_a4/
[1] H. Attouch, Variational convergence of functions and operators, Appl. Math. Ser., Pitman, Boston, MA, 1984, xiv+423 pp. | MR | Zbl
[2] W. Ballmann, M. Gromov, V. Schroeder, Manifolds of nonpositive curvature, Progr. Math., 61, Birkhäuser, Boston, MA, 1985, vi+263 pp. | MR | Zbl
[3] M. Bardi, I. Capuzzo-Dolcetta, Optimal control and viscosity solutions of Hamilton–Jacobi–Bellman equations, Systems Control Found. Appl., Birkhäuser, Boston, MA, 1997, xviii+570 pp. | MR | Zbl
[4] E. N. Barron, R. Jensen, “Semicontinuous viscosity solutions for Hamilton–Jacobi equations with convex Hamiltonians”, Comm. Partial Differential Equations, 15:12 (1990), 1713–1742 | DOI | MR | Zbl
[5] E. N. Barron, R. Jensen, “Optimal control and semicontinuous viscosity solutions”, Proc. Amer. Math. Soc., 113:2 (1991), 397–402 | DOI | MR | Zbl
[6] J. M. Borwein, Q. J. Zhu, “A survey of subdifferential calculus with applications”, Nonlinear Anal., 38:6, Ser. A: Theory Methods (1999), 687–773 | DOI | MR | Zbl
[7] J. M. Borwein, Q. J. Zhu, Techniques of variational analysis, CMS Books Math. / Ouvrages Math. SMC, 20, Springer–Verlag, New York, 2005, vi+362 pp. | DOI | MR | Zbl
[8] J. M. Borwein, D. Zhuang, “On Fan's minimax theorem”, Math. Program., 34:2 (1986), 232–234 | DOI | MR | Zbl
[9] A. Brønsted, R. T. Rockafellar, “On the subdifferentiability of convex functions”, Proc. Amer. Math. Soc., 16:4 (1965), 605–611 | MR | Zbl
[10] F. H. Clarke, Optimization and nonsmooth analysis, Canad. Math. Soc. Ser. Monogr. Adv. Texts, Wiley, New York, 1983 | MR | MR | Zbl | Zbl
[11] F. H. Clarke, Methods of dynamic and nonsmooth optimization, CBMS-NSF Regional Conf. Ser. in Appl. Math., 57, SIAM, Philadelphia, PA, 1989, vi+90 pp. | MR | Zbl
[12] F. H. Clarke, Yu. S. Ledyaev, “New finite-increment formulas”, Russian Acad. Sci. Dokl. Math., 48:1 (1994), 75–79 | MR | Zbl
[13] F. Clarke, Yu. S. Ledyaev, “Mean value inequalities in Hilbert space”, Trans. Amer. Math. Soc., 344:1 (1994), 307–324 | DOI | MR | Zbl
[14] F. H. Clarke, Yu. S. Ledyaev, “Mean value inequalities”, Proc. Amer. Math. Soc., 122:4 (1994), 1075–1083 | DOI | MR | Zbl
[15] F. H. Clarke, Yu. S. Ledyaev, R. J. Stern, “Complements, approximations, smoothings and invariance properties”, J. Convex Anal., 4:2 (1997), 189–219 ; http://www.emis.de/journals/JCA/vol.4_no.2/1.html | MR | Zbl
[16] F. H. Clarke, Yu. S. Ledyaev, P. R. Wolenski, “Proximal analysis and minimization principles”, J. Math. Anal. Appl., 196:2 (1995), 722–735 | DOI | MR | Zbl
[17] F. H. Clarke, Yu. S. Ledyaev, R. J. Stern, P. R. Wolenski, Nonsmooth analysis and control theory, Grad. Texts in Math., 178, Springer-Verlag, New York, 1998, xiv+276 pp. | DOI | MR | Zbl
[18] J. M. Danskin, “The theory of max-min with applications”, SIAM J. Appl. Math., 14 (1966), 641–664 | DOI | MR | Zbl
[19] J. M. Danskin, The theory of max-min and its application to weapons allocation problems, Econometrics and Operations Research, V, Springer-Verlag, New York, 1967, ix+126 pp. | MR | Zbl
[20] L. Danzer, B. Grünbaum, V. Klee, “Helly's theorem and its relatives”, Convexity, Proc. Sympos. Pure Math., VII, Amer. Math. Soc., Providence, RI, 1963, 101–180 | MR | MR | Zbl | Zbl
[21] E. De Giorgi, G. Del Maso, “$\Gamma$-convergence and calculus of variations”, Mathematical theories of optimization (Genova, 1981), Lecture Notes in Math., 979, Springer, Berlin, 1983, 121–143 | DOI | MR | Zbl
[22] B. V. Dekster, “The Jung theorem in metric spaces of curvature bounded above”, Proc. Amer. Math. Soc., 125:8 (1997), 2425–2433 | DOI | MR | Zbl
[23] V. F. Dem'yanov, “On the solution of several minimax problems. I”, Cybernetics, 2 (1966), 47–53 ; II: РљРёР±РμСЂРЅРμтика, 3:3 (1967), 62–66 | DOI | DOI | MR | MR | Zbl | Zbl
[24] Cybernetics, 3 (1967), 51–54 | DOI | DOI | MR | MR | Zbl | Zbl
[25] V. F. Demyanov, Minimaks: differentsiruemost po napravleniyam, Izd-vo Leningrad. un-ta, L., 1974, 112 pp. | MR | Zbl
[26] V. F. Dem'yanov, V. N. Malozemov, Introduction to minimax, Halsted Press [Wiley], New York–Toronto, ON, 1974, vii+307 pp. | MR | MR | Zbl | Zbl
[27] R. Deville, “Stability of subdifferentials of nonconvex functions in Banach spaces”, Set-Valued Anal., 2:1-2 (1994), 141–157 | DOI | MR | Zbl
[28] R. Deville, “Smooth variational principles and non-smooth analysis in Banach spaces”, Nonlinear analysis, differential equations and control (Montreal, QC, 1998), NATO Sci. Ser. C Math. Phys. Sci., 528, Kluwer Acad. Publ., Dordrecht, 1999, 369–405 | MR | Zbl
[29] R. Deville, G. Godefroy, V. Zizler, “A smooth variational principle with applications to Hamilton–Jacobi equations in infinite dimensions”, J. Funct. Anal., 111:1 (1993), 197–212 | DOI | MR | Zbl
[30] I. Ekeland, G. Lebourg, “Generic Fréchet-differentiability and perturbed optimization problems in Banach spaces”, Trans. Amer. Math. Soc., 224:2 (1976), 193–216 (1977) | DOI | MR | Zbl
[31] I. Ekeland, “Nonconvex minimization problems”, Bull. Amer. Math. Soc. (N. S. ), 1:3 (1979), 443–474 | DOI | MR | Zbl
[32] Yu. S. Ledyaev, “On generic existence and uniqueness in nonconvex optimal control problems”, Set-Valued Anal., 12:1-2 (2004), 147–162 | DOI | MR | Zbl
[33] Yu. S. Ledyaev, J. S. Treiman, Q. J. Zhu, “Helly's intersection theorem on manifolds of nonpositive curvature”, J. Convex Anal., 13:3-4 (2006), 785–798 | MR | Zbl
[34] Yu. S. Ledyaev, Q. J. Zhu, “Implicit multifunction theorems”, Set-Valued Anal., 7:3 (1999), 209–238 | DOI | MR | Zbl
[35] Yu. S. Ledyaev, Q. J. Zhu, “Multidirectional mean value inequalities and weak monotonicity”, J. London Math. Soc. (2), 71:1 (2005), 187–202 | DOI | MR | Zbl
[36] Yu. S. Ledyaev, Q. J. Zhu, “Nonsmooth analysis on smooth manifolds”, Trans. Amer. Math. Soc., 359:8 (2007), 3687–3732 | DOI | MR | Zbl
[37] B. S. Mordukhovich, Variational analysis and generalized differentiation. I. Basic theory, Grundlehren Math. Wiss., 330, Springer-Verlag, Berlin, 2006, xxii+579 pp. | DOI | MR | Zbl
[38] B. S. Mordukhovich, Variational analysis and generalized differentiation. II. Applications, Grundlehren Math. Wiss., 331, Springer-Verlag, Berlin, 2005, xxii+610 pp. | DOI | MR | Zbl
[39] R. R. Phelps, Convex functions, monotone operators and differentiability, Lecture Notes in Math., 1364, 2nd ed., Springer-Verlag, Berlin, 1993, xii+117 pp. | DOI | MR | Zbl
[40] B. N. Pshenichnyi, “Dual method in extremum problems. I”, Cybernetics, 1:3 (1965), 91–99 | DOI | DOI | MR | MR | Zbl | Zbl
[41] Cybernetics, 1:4 (1965), 72–79 | DOI | DOI | MR | MR | Zbl | Zbl
[42] B. N. Pshenichnyi, Necessary conditions for an extremum, Pure and Applied Mathematics, 4, Marcel Dekker, New York, 1971, xviii+230 pp. | MR | MR | Zbl
[43] R. T. Rockafellar, Convex analysis, Princeton Math. Ser., 28, Princeton Univ. Press, Princeton, NJ, 1970, xviii+451 pp. | MR | Zbl | Zbl
[44] R. T. Rockafellar, R. J.-B. Wets, Variational analysis, Grundlehren Math. Wiss., 317, Springer-Verlag, Berlin, 1998, xiv+733 pp. | DOI | MR | Zbl
[45] W. Schirotzek, Nonsmooth analysis, Universitext, Springer, Berlin, 2007, xii+373 pp. | DOI | MR | Zbl
[46] V. N. Solov'ev, “Duality of nonconvex extremal problems”, Soviet Math. Dokl., 42:2 (1991), 380–383 | MR | Zbl
[47] V. N. Solov'ev, “The subdifferential and the directional derivatives of the maximum of a family of convex functions. II”, Izv. Math., 65:1 (2001), 99–121 | DOI | MR | Zbl
[48] C. Stegall, “Optimization of functions on certain subsets of Banach spaces”, Math. Ann., 236:2 (1978), 171–176 | DOI | MR | Zbl
[49] Q. J. Zhu, “Clarke–Ledyaev mean value inequalities in smooth Banach spaces”, Nonlinear Anal., 32:3 (1998), 315–324 | DOI | MR | Zbl