Sub- and supergradients of envelopes, semicontinuous closures, and limits of sequences of functions
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 67 (2012) no. 2, pp. 345-373

Voir la notice de l'article provenant de la source Math-Net.Ru

Envelopes $\sup_{\gamma\in\Gamma}f_{\gamma}(x)$ or $\inf_{\gamma\in\Gamma}f_{\gamma}(x)$ of parametric families of functions are typical non-differentiable functions arising in non-smooth analysis, optimization theory, control theory, the theory of generalized solutions of first-order partial differential equations, and other applications. In this survey formulae are obtained for sub- and supergradients of envelopes of lower semicontinuous functions, their corresponding semicontinuous closures, and limits and $\Gamma$-limits of sequences of functions. The unified method of derivation of these formulae for semicontinuous functions is based on the use of multidirectional mean-value inequalities for sets and non-smooth functions. These results are used to prove generalized versions of the Jung and Helly theorems for manifolds of non-positive curvature, to prove uniqueness of solutions of some optimization problems, and to get a new derivation of Stegall's well-known variational principle for smooth Banach spaces. Also, necessary conditions are derived for $\varepsilon$-maximizers of lower semicontinuous functions. Bibliography: 47 titles.
Keywords: non-linear functional analysis, non-smooth analysis, upper and lower envelopes, generalizations of the Jung, Helly, and Stegall theorems.
@article{RM_2012_67_2_a4,
     author = {Yu. S. Ledyaev and J. S. Treiman},
     title = {Sub- and supergradients of envelopes, semicontinuous closures, and limits of sequences of functions},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {345--373},
     publisher = {mathdoc},
     volume = {67},
     number = {2},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2012_67_2_a4/}
}
TY  - JOUR
AU  - Yu. S. Ledyaev
AU  - J. S. Treiman
TI  - Sub- and supergradients of envelopes, semicontinuous closures, and limits of sequences of functions
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2012
SP  - 345
EP  - 373
VL  - 67
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RM_2012_67_2_a4/
LA  - en
ID  - RM_2012_67_2_a4
ER  - 
%0 Journal Article
%A Yu. S. Ledyaev
%A J. S. Treiman
%T Sub- and supergradients of envelopes, semicontinuous closures, and limits of sequences of functions
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2012
%P 345-373
%V 67
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RM_2012_67_2_a4/
%G en
%F RM_2012_67_2_a4
Yu. S. Ledyaev; J. S. Treiman. Sub- and supergradients of envelopes, semicontinuous closures, and limits of sequences of functions. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 67 (2012) no. 2, pp. 345-373. http://geodesic.mathdoc.fr/item/RM_2012_67_2_a4/