Sub- and supergradients of envelopes, semicontinuous closures, and limits of sequences of functions
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 67 (2012) no. 2, pp. 345-373 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Envelopes $\sup_{\gamma\in\Gamma}f_{\gamma}(x)$ or $\inf_{\gamma\in\Gamma}f_{\gamma}(x)$ of parametric families of functions are typical non-differentiable functions arising in non-smooth analysis, optimization theory, control theory, the theory of generalized solutions of first-order partial differential equations, and other applications. In this survey formulae are obtained for sub- and supergradients of envelopes of lower semicontinuous functions, their corresponding semicontinuous closures, and limits and $\Gamma$-limits of sequences of functions. The unified method of derivation of these formulae for semicontinuous functions is based on the use of multidirectional mean-value inequalities for sets and non-smooth functions. These results are used to prove generalized versions of the Jung and Helly theorems for manifolds of non-positive curvature, to prove uniqueness of solutions of some optimization problems, and to get a new derivation of Stegall's well-known variational principle for smooth Banach spaces. Also, necessary conditions are derived for $\varepsilon$-maximizers of lower semicontinuous functions. Bibliography: 47 titles.
Keywords: non-linear functional analysis, non-smooth analysis, upper and lower envelopes, generalizations of the Jung, Helly, and Stegall theorems.
@article{RM_2012_67_2_a4,
     author = {Yu. S. Ledyaev and J. S. Treiman},
     title = {Sub- and supergradients of envelopes, semicontinuous closures, and limits of sequences of functions},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {345--373},
     year = {2012},
     volume = {67},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2012_67_2_a4/}
}
TY  - JOUR
AU  - Yu. S. Ledyaev
AU  - J. S. Treiman
TI  - Sub- and supergradients of envelopes, semicontinuous closures, and limits of sequences of functions
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2012
SP  - 345
EP  - 373
VL  - 67
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/RM_2012_67_2_a4/
LA  - en
ID  - RM_2012_67_2_a4
ER  - 
%0 Journal Article
%A Yu. S. Ledyaev
%A J. S. Treiman
%T Sub- and supergradients of envelopes, semicontinuous closures, and limits of sequences of functions
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2012
%P 345-373
%V 67
%N 2
%U http://geodesic.mathdoc.fr/item/RM_2012_67_2_a4/
%G en
%F RM_2012_67_2_a4
Yu. S. Ledyaev; J. S. Treiman. Sub- and supergradients of envelopes, semicontinuous closures, and limits of sequences of functions. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 67 (2012) no. 2, pp. 345-373. http://geodesic.mathdoc.fr/item/RM_2012_67_2_a4/

[1] H. Attouch, Variational convergence of functions and operators, Appl. Math. Ser., Pitman, Boston, MA, 1984, xiv+423 pp. | MR | Zbl

[2] W. Ballmann, M. Gromov, V. Schroeder, Manifolds of nonpositive curvature, Progr. Math., 61, Birkhäuser, Boston, MA, 1985, vi+263 pp. | MR | Zbl

[3] M. Bardi, I. Capuzzo-Dolcetta, Optimal control and viscosity solutions of Hamilton–Jacobi–Bellman equations, Systems Control Found. Appl., Birkhäuser, Boston, MA, 1997, xviii+570 pp. | MR | Zbl

[4] E. N. Barron, R. Jensen, “Semicontinuous viscosity solutions for Hamilton–Jacobi equations with convex Hamiltonians”, Comm. Partial Differential Equations, 15:12 (1990), 1713–1742 | DOI | MR | Zbl

[5] E. N. Barron, R. Jensen, “Optimal control and semicontinuous viscosity solutions”, Proc. Amer. Math. Soc., 113:2 (1991), 397–402 | DOI | MR | Zbl

[6] J. M. Borwein, Q. J. Zhu, “A survey of subdifferential calculus with applications”, Nonlinear Anal., 38:6, Ser. A: Theory Methods (1999), 687–773 | DOI | MR | Zbl

[7] J. M. Borwein, Q. J. Zhu, Techniques of variational analysis, CMS Books Math. / Ouvrages Math. SMC, 20, Springer–Verlag, New York, 2005, vi+362 pp. | DOI | MR | Zbl

[8] J. M. Borwein, D. Zhuang, “On Fan's minimax theorem”, Math. Program., 34:2 (1986), 232–234 | DOI | MR | Zbl

[9] A. Brønsted, R. T. Rockafellar, “On the subdifferentiability of convex functions”, Proc. Amer. Math. Soc., 16:4 (1965), 605–611 | MR | Zbl

[10] F. H. Clarke, Optimization and nonsmooth analysis, Canad. Math. Soc. Ser. Monogr. Adv. Texts, Wiley, New York, 1983 | MR | MR | Zbl | Zbl

[11] F. H. Clarke, Methods of dynamic and nonsmooth optimization, CBMS-NSF Regional Conf. Ser. in Appl. Math., 57, SIAM, Philadelphia, PA, 1989, vi+90 pp. | MR | Zbl

[12] F. H. Clarke, Yu. S. Ledyaev, “New finite-increment formulas”, Russian Acad. Sci. Dokl. Math., 48:1 (1994), 75–79 | MR | Zbl

[13] F. Clarke, Yu. S. Ledyaev, “Mean value inequalities in Hilbert space”, Trans. Amer. Math. Soc., 344:1 (1994), 307–324 | DOI | MR | Zbl

[14] F. H. Clarke, Yu. S. Ledyaev, “Mean value inequalities”, Proc. Amer. Math. Soc., 122:4 (1994), 1075–1083 | DOI | MR | Zbl

[15] F. H. Clarke, Yu. S. Ledyaev, R. J. Stern, “Complements, approximations, smoothings and invariance properties”, J. Convex Anal., 4:2 (1997), 189–219 ; http://www.emis.de/journals/JCA/vol.4_no.2/1.html | MR | Zbl

[16] F. H. Clarke, Yu. S. Ledyaev, P. R. Wolenski, “Proximal analysis and minimization principles”, J. Math. Anal. Appl., 196:2 (1995), 722–735 | DOI | MR | Zbl

[17] F. H. Clarke, Yu. S. Ledyaev, R. J. Stern, P. R. Wolenski, Nonsmooth analysis and control theory, Grad. Texts in Math., 178, Springer-Verlag, New York, 1998, xiv+276 pp. | DOI | MR | Zbl

[18] J. M. Danskin, “The theory of max-min with applications”, SIAM J. Appl. Math., 14 (1966), 641–664 | DOI | MR | Zbl

[19] J. M. Danskin, The theory of max-min and its application to weapons allocation problems, Econometrics and Operations Research, V, Springer-Verlag, New York, 1967, ix+126 pp. | MR | Zbl

[20] L. Danzer, B. Grünbaum, V. Klee, “Helly's theorem and its relatives”, Convexity, Proc. Sympos. Pure Math., VII, Amer. Math. Soc., Providence, RI, 1963, 101–180 | MR | MR | Zbl | Zbl

[21] E. De Giorgi, G. Del Maso, “$\Gamma$-convergence and calculus of variations”, Mathematical theories of optimization (Genova, 1981), Lecture Notes in Math., 979, Springer, Berlin, 1983, 121–143 | DOI | MR | Zbl

[22] B. V. Dekster, “The Jung theorem in metric spaces of curvature bounded above”, Proc. Amer. Math. Soc., 125:8 (1997), 2425–2433 | DOI | MR | Zbl

[23] V. F. Dem'yanov, “On the solution of several minimax problems. I”, Cybernetics, 2 (1966), 47–53 ; II: РљРёР±РμСЂРЅРμтика, 3:3 (1967), 62–66 | DOI | DOI | MR | MR | Zbl | Zbl

[24] Cybernetics, 3 (1967), 51–54 | DOI | DOI | MR | MR | Zbl | Zbl

[25] V. F. Demyanov, Minimaks: differentsiruemost po napravleniyam, Izd-vo Leningrad. un-ta, L., 1974, 112 pp. | MR | Zbl

[26] V. F. Dem'yanov, V. N. Malozemov, Introduction to minimax, Halsted Press [Wiley], New York–Toronto, ON, 1974, vii+307 pp. | MR | MR | Zbl | Zbl

[27] R. Deville, “Stability of subdifferentials of nonconvex functions in Banach spaces”, Set-Valued Anal., 2:1-2 (1994), 141–157 | DOI | MR | Zbl

[28] R. Deville, “Smooth variational principles and non-smooth analysis in Banach spaces”, Nonlinear analysis, differential equations and control (Montreal, QC, 1998), NATO Sci. Ser. C Math. Phys. Sci., 528, Kluwer Acad. Publ., Dordrecht, 1999, 369–405 | MR | Zbl

[29] R. Deville, G. Godefroy, V. Zizler, “A smooth variational principle with applications to Hamilton–Jacobi equations in infinite dimensions”, J. Funct. Anal., 111:1 (1993), 197–212 | DOI | MR | Zbl

[30] I. Ekeland, G. Lebourg, “Generic Fréchet-differentiability and perturbed optimization problems in Banach spaces”, Trans. Amer. Math. Soc., 224:2 (1976), 193–216 (1977) | DOI | MR | Zbl

[31] I. Ekeland, “Nonconvex minimization problems”, Bull. Amer. Math. Soc. (N. S. ), 1:3 (1979), 443–474 | DOI | MR | Zbl

[32] Yu. S. Ledyaev, “On generic existence and uniqueness in nonconvex optimal control problems”, Set-Valued Anal., 12:1-2 (2004), 147–162 | DOI | MR | Zbl

[33] Yu. S. Ledyaev, J. S. Treiman, Q. J. Zhu, “Helly's intersection theorem on manifolds of nonpositive curvature”, J. Convex Anal., 13:3-4 (2006), 785–798 | MR | Zbl

[34] Yu. S. Ledyaev, Q. J. Zhu, “Implicit multifunction theorems”, Set-Valued Anal., 7:3 (1999), 209–238 | DOI | MR | Zbl

[35] Yu. S. Ledyaev, Q. J. Zhu, “Multidirectional mean value inequalities and weak monotonicity”, J. London Math. Soc. (2), 71:1 (2005), 187–202 | DOI | MR | Zbl

[36] Yu. S. Ledyaev, Q. J. Zhu, “Nonsmooth analysis on smooth manifolds”, Trans. Amer. Math. Soc., 359:8 (2007), 3687–3732 | DOI | MR | Zbl

[37] B. S. Mordukhovich, Variational analysis and generalized differentiation. I. Basic theory, Grundlehren Math. Wiss., 330, Springer-Verlag, Berlin, 2006, xxii+579 pp. | DOI | MR | Zbl

[38] B. S. Mordukhovich, Variational analysis and generalized differentiation. II. Applications, Grundlehren Math. Wiss., 331, Springer-Verlag, Berlin, 2005, xxii+610 pp. | DOI | MR | Zbl

[39] R. R. Phelps, Convex functions, monotone operators and differentiability, Lecture Notes in Math., 1364, 2nd ed., Springer-Verlag, Berlin, 1993, xii+117 pp. | DOI | MR | Zbl

[40] B. N. Pshenichnyi, “Dual method in extremum problems. I”, Cybernetics, 1:3 (1965), 91–99 | DOI | DOI | MR | MR | Zbl | Zbl

[41] Cybernetics, 1:4 (1965), 72–79 | DOI | DOI | MR | MR | Zbl | Zbl

[42] B. N. Pshenichnyi, Necessary conditions for an extremum, Pure and Applied Mathematics, 4, Marcel Dekker, New York, 1971, xviii+230 pp. | MR | MR | Zbl

[43] R. T. Rockafellar, Convex analysis, Princeton Math. Ser., 28, Princeton Univ. Press, Princeton, NJ, 1970, xviii+451 pp. | MR | Zbl | Zbl

[44] R. T. Rockafellar, R. J.-B. Wets, Variational analysis, Grundlehren Math. Wiss., 317, Springer-Verlag, Berlin, 1998, xiv+733 pp. | DOI | MR | Zbl

[45] W. Schirotzek, Nonsmooth analysis, Universitext, Springer, Berlin, 2007, xii+373 pp. | DOI | MR | Zbl

[46] V. N. Solov'ev, “Duality of nonconvex extremal problems”, Soviet Math. Dokl., 42:2 (1991), 380–383 | MR | Zbl

[47] V. N. Solov'ev, “The subdifferential and the directional derivatives of the maximum of a family of convex functions. II”, Izv. Math., 65:1 (2001), 99–121 | DOI | MR | Zbl

[48] C. Stegall, “Optimization of functions on certain subsets of Banach spaces”, Math. Ann., 236:2 (1978), 171–176 | DOI | MR | Zbl

[49] Q. J. Zhu, “Clarke–Ledyaev mean value inequalities in smooth Banach spaces”, Nonlinear Anal., 32:3 (1998), 315–324 | DOI | MR | Zbl