Self-excited wave processes in chains of diffusion-linked delay equations
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 67 (2012) no. 2, pp. 297-343
Voir la notice de l'article provenant de la source Math-Net.Ru
A new mathematical object is introduced, a scalar non-linear difference-differential equation with time delay which is a certain modification of the Hutchinson equation well-known in ecology. It is shown that the buffering phenomenon occurs in a one-dimensional chain of diffusion-linked equations of this type. Namely, as the number of links grows in a way compatible with a decrease of the diffusion coefficient, the number of co-existing stable periodic solutions of the system increases without limit.
Bibliography: 15 titles.
Keywords:
modified Hutchinson equation, self-excited wave processes, relaxation cycle, asymptotic behaviour, stability.
@article{RM_2012_67_2_a3,
author = {A. Yu. Kolesov and N. Kh. Rozov},
title = {Self-excited wave processes in chains of diffusion-linked delay equations},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {297--343},
publisher = {mathdoc},
volume = {67},
number = {2},
year = {2012},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2012_67_2_a3/}
}
TY - JOUR AU - A. Yu. Kolesov AU - N. Kh. Rozov TI - Self-excited wave processes in chains of diffusion-linked delay equations JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2012 SP - 297 EP - 343 VL - 67 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RM_2012_67_2_a3/ LA - en ID - RM_2012_67_2_a3 ER -
%0 Journal Article %A A. Yu. Kolesov %A N. Kh. Rozov %T Self-excited wave processes in chains of diffusion-linked delay equations %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2012 %P 297-343 %V 67 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/RM_2012_67_2_a3/ %G en %F RM_2012_67_2_a3
A. Yu. Kolesov; N. Kh. Rozov. Self-excited wave processes in chains of diffusion-linked delay equations. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 67 (2012) no. 2, pp. 297-343. http://geodesic.mathdoc.fr/item/RM_2012_67_2_a3/