Self-excited wave processes in chains of diffusion-linked delay equations
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 67 (2012) no. 2, pp. 297-343

Voir la notice de l'article provenant de la source Math-Net.Ru

A new mathematical object is introduced, a scalar non-linear difference-differential equation with time delay which is a certain modification of the Hutchinson equation well-known in ecology. It is shown that the buffering phenomenon occurs in a one-dimensional chain of diffusion-linked equations of this type. Namely, as the number of links grows in a way compatible with a decrease of the diffusion coefficient, the number of co-existing stable periodic solutions of the system increases without limit. Bibliography: 15 titles.
Keywords: modified Hutchinson equation, self-excited wave processes, relaxation cycle, asymptotic behaviour, stability.
@article{RM_2012_67_2_a3,
     author = {A. Yu. Kolesov and N. Kh. Rozov},
     title = {Self-excited wave processes in chains of diffusion-linked delay equations},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {297--343},
     publisher = {mathdoc},
     volume = {67},
     number = {2},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2012_67_2_a3/}
}
TY  - JOUR
AU  - A. Yu. Kolesov
AU  - N. Kh. Rozov
TI  - Self-excited wave processes in chains of diffusion-linked delay equations
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2012
SP  - 297
EP  - 343
VL  - 67
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RM_2012_67_2_a3/
LA  - en
ID  - RM_2012_67_2_a3
ER  - 
%0 Journal Article
%A A. Yu. Kolesov
%A N. Kh. Rozov
%T Self-excited wave processes in chains of diffusion-linked delay equations
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2012
%P 297-343
%V 67
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RM_2012_67_2_a3/
%G en
%F RM_2012_67_2_a3
A. Yu. Kolesov; N. Kh. Rozov. Self-excited wave processes in chains of diffusion-linked delay equations. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 67 (2012) no. 2, pp. 297-343. http://geodesic.mathdoc.fr/item/RM_2012_67_2_a3/