Theory and applications of the problem of Euler elastica
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 67 (2012) no. 2, pp. 281-296
Voir la notice de l'article provenant de la source Math-Net.Ru
The paper is devoted to the theory of extremal problems on Euler elastica. The Riccati equation method is used to study sufficient optimality conditions for the associated problem of minimization of the energy of a physical pendulum. Numerous applications are described for the problem of Euler elastica, and its connections with the theory of completely integrable Hamiltonian systems are discussed.
Bibliography: 10 titles.
Keywords:
Pontryagin maximum principle, elliptic functions, non-linear Schrödinger equation.
Mots-clés : Riccati equation
Mots-clés : Riccati equation
@article{RM_2012_67_2_a2,
author = {M. I. Zelikin},
title = {Theory and applications of the problem of {Euler} elastica},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {281--296},
publisher = {mathdoc},
volume = {67},
number = {2},
year = {2012},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2012_67_2_a2/}
}
M. I. Zelikin. Theory and applications of the problem of Euler elastica. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 67 (2012) no. 2, pp. 281-296. http://geodesic.mathdoc.fr/item/RM_2012_67_2_a2/