Mots-clés : Riccati equation
@article{RM_2012_67_2_a2,
author = {M. I. Zelikin},
title = {Theory and applications of the problem of {Euler} elastica},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {281--296},
year = {2012},
volume = {67},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2012_67_2_a2/}
}
M. I. Zelikin. Theory and applications of the problem of Euler elastica. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 67 (2012) no. 2, pp. 281-296. http://geodesic.mathdoc.fr/item/RM_2012_67_2_a2/
[1] M. I. Zelikin, Control theory and optimization, v. I, Encyclopaedia Math. Sci., 86, Homogeneous spaces and the Riccati equation in the calculus of variations, Springer-Verlag, Berlin, 2000, xii+284 pp. | MR | Zbl | Zbl
[2] Yu. L. Sachkov, “Conjugate points in Euler elastic problem”, J. Dyn. Control Syst., 14:3 (2008), 409–439 ; arXiv: 0705.1003 | DOI | MR | Zbl
[3] Ph. A. Griffiths, Exterior differential systems and the calculus of variations, Progr. Math., 25, Birkhäuser, Boston, MA, 1983, ix+335 pp. | MR | MR | Zbl
[4] R. Bryant, Ph. Griffiths, “Reduction for constrained variational problems and $\int\frac12k^2\,ds$”, Amer. J. Math., 108:3 (1986), 525–570 | DOI | MR | Zbl
[5] V. Jurdjevic, F. Monroy-Pérez, “Variational problems on Lie groups and their homogeneous spaces: elastic curves, tops, and constrained geodesic problems”, Contemporary trends in nonlinear geometric control theory and its applications (México City, 2000), World Sci. Publ., Singapore, 2002, 3–51 | MR | Zbl
[6] L. Sante da Rios, “Sul moto d'un liquido indefinito con un filetto vorticoso di forma qualunque”, Rend. Circ. Mat. Palermo, 22 (1906), 117–135 | DOI | Zbl
[7] M. Barros, J. L. Cabrerizo, M. Fernández, A. Romero, “Magnetic vortex filament flows”, J. Math. Phys., 2007, no. 8, 082904, 27 pp. | DOI | MR | Zbl
[8] M. Barros, M. Fernandes, P. Lucas, M. Merono, “Hopf cylinders, $B$-scrolls and solitons of the Betchov–Da Rios equation in the three-dimensional anti-De Sitter space”, C. R. Acad. Sci. Paris Sér. I Math., 321:4 (1995), 505–509 | MR | Zbl
[9] M. Lakshmanan, “Continuum spin system as an exactly solvable dynamical system”, Phys. Lett. A, 61:1 (1977), 53–54 | DOI
[10] H. Hasimoto, “A soliton on a vortex filament”, J. Fluid Mech., 51:3 (1972), 477–485 | DOI | Zbl