Theory and applications of the problem of Euler elastica
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 67 (2012) no. 2, pp. 281-296 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper is devoted to the theory of extremal problems on Euler elastica. The Riccati equation method is used to study sufficient optimality conditions for the associated problem of minimization of the energy of a physical pendulum. Numerous applications are described for the problem of Euler elastica, and its connections with the theory of completely integrable Hamiltonian systems are discussed. Bibliography: 10 titles.
Keywords: Pontryagin maximum principle, elliptic functions, non-linear Schrödinger equation.
Mots-clés : Riccati equation
@article{RM_2012_67_2_a2,
     author = {M. I. Zelikin},
     title = {Theory and applications of the problem of {Euler} elastica},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {281--296},
     year = {2012},
     volume = {67},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2012_67_2_a2/}
}
TY  - JOUR
AU  - M. I. Zelikin
TI  - Theory and applications of the problem of Euler elastica
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2012
SP  - 281
EP  - 296
VL  - 67
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/RM_2012_67_2_a2/
LA  - en
ID  - RM_2012_67_2_a2
ER  - 
%0 Journal Article
%A M. I. Zelikin
%T Theory and applications of the problem of Euler elastica
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2012
%P 281-296
%V 67
%N 2
%U http://geodesic.mathdoc.fr/item/RM_2012_67_2_a2/
%G en
%F RM_2012_67_2_a2
M. I. Zelikin. Theory and applications of the problem of Euler elastica. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 67 (2012) no. 2, pp. 281-296. http://geodesic.mathdoc.fr/item/RM_2012_67_2_a2/

[1] M. I. Zelikin, Control theory and optimization, v. I, Encyclopaedia Math. Sci., 86, Homogeneous spaces and the Riccati equation in the calculus of variations, Springer-Verlag, Berlin, 2000, xii+284 pp. | MR | Zbl | Zbl

[2] Yu. L. Sachkov, “Conjugate points in Euler elastic problem”, J. Dyn. Control Syst., 14:3 (2008), 409–439 ; arXiv: 0705.1003 | DOI | MR | Zbl

[3] Ph. A. Griffiths, Exterior differential systems and the calculus of variations, Progr. Math., 25, Birkhäuser, Boston, MA, 1983, ix+335 pp. | MR | MR | Zbl

[4] R. Bryant, Ph. Griffiths, “Reduction for constrained variational problems and $\int\frac12k^2\,ds$”, Amer. J. Math., 108:3 (1986), 525–570 | DOI | MR | Zbl

[5] V. Jurdjevic, F. Monroy-Pérez, “Variational problems on Lie groups and their homogeneous spaces: elastic curves, tops, and constrained geodesic problems”, Contemporary trends in nonlinear geometric control theory and its applications (México City, 2000), World Sci. Publ., Singapore, 2002, 3–51 | MR | Zbl

[6] L. Sante da Rios, “Sul moto d'un liquido indefinito con un filetto vorticoso di forma qualunque”, Rend. Circ. Mat. Palermo, 22 (1906), 117–135 | DOI | Zbl

[7] M. Barros, J. L. Cabrerizo, M. Fernández, A. Romero, “Magnetic vortex filament flows”, J. Math. Phys., 2007, no. 8, 082904, 27 pp. | DOI | MR | Zbl

[8] M. Barros, M. Fernandes, P. Lucas, M. Merono, “Hopf cylinders, $B$-scrolls and solitons of the Betchov–Da Rios equation in the three-dimensional anti-De Sitter space”, C. R. Acad. Sci. Paris Sér. I Math., 321:4 (1995), 505–509 | MR | Zbl

[9] M. Lakshmanan, “Continuum spin system as an exactly solvable dynamical system”, Phys. Lett. A, 61:1 (1977), 53–54 | DOI

[10] H. Hasimoto, “A soliton on a vortex filament”, J. Fluid Mech., 51:3 (1972), 477–485 | DOI | Zbl