Theory and applications of the problem of Euler elastica
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 67 (2012) no. 2, pp. 281-296

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to the theory of extremal problems on Euler elastica. The Riccati equation method is used to study sufficient optimality conditions for the associated problem of minimization of the energy of a physical pendulum. Numerous applications are described for the problem of Euler elastica, and its connections with the theory of completely integrable Hamiltonian systems are discussed. Bibliography: 10 titles.
Keywords: Pontryagin maximum principle, elliptic functions, non-linear Schrödinger equation.
Mots-clés : Riccati equation
@article{RM_2012_67_2_a2,
     author = {M. I. Zelikin},
     title = {Theory and applications of the problem of {Euler} elastica},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {281--296},
     publisher = {mathdoc},
     volume = {67},
     number = {2},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2012_67_2_a2/}
}
TY  - JOUR
AU  - M. I. Zelikin
TI  - Theory and applications of the problem of Euler elastica
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2012
SP  - 281
EP  - 296
VL  - 67
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RM_2012_67_2_a2/
LA  - en
ID  - RM_2012_67_2_a2
ER  - 
%0 Journal Article
%A M. I. Zelikin
%T Theory and applications of the problem of Euler elastica
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2012
%P 281-296
%V 67
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RM_2012_67_2_a2/
%G en
%F RM_2012_67_2_a2
M. I. Zelikin. Theory and applications of the problem of Euler elastica. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 67 (2012) no. 2, pp. 281-296. http://geodesic.mathdoc.fr/item/RM_2012_67_2_a2/