Controllability of non-linear systems: generic singularities and their stability
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 67 (2012) no. 2, pp. 255-280 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper presents an overview of the state of the art in applications of singularity theory to the analysis of generic singularities of controllability of non-linear systems on manifolds. Bibliography: 40 titles.
Keywords: controllability, singularity, stability
Mots-clés : classification.
@article{RM_2012_67_2_a1,
     author = {A. A. Davydov and V. M. Zakalyukin},
     title = {Controllability of non-linear systems: generic singularities and their stability},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {255--280},
     year = {2012},
     volume = {67},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2012_67_2_a1/}
}
TY  - JOUR
AU  - A. A. Davydov
AU  - V. M. Zakalyukin
TI  - Controllability of non-linear systems: generic singularities and their stability
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2012
SP  - 255
EP  - 280
VL  - 67
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/RM_2012_67_2_a1/
LA  - en
ID  - RM_2012_67_2_a1
ER  - 
%0 Journal Article
%A A. A. Davydov
%A V. M. Zakalyukin
%T Controllability of non-linear systems: generic singularities and their stability
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2012
%P 255-280
%V 67
%N 2
%U http://geodesic.mathdoc.fr/item/RM_2012_67_2_a1/
%G en
%F RM_2012_67_2_a1
A. A. Davydov; V. M. Zakalyukin. Controllability of non-linear systems: generic singularities and their stability. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 67 (2012) no. 2, pp. 255-280. http://geodesic.mathdoc.fr/item/RM_2012_67_2_a1/

[1] S. Smale, “Global analysis and economics. I. Pareto optimum and a generalization of Morse theory”, Dynamical systems, Proc. Sympos. (Univ. Bahia, Salvador, 1971), Academic Press, New York, 1973, 531–544 | MR | MR | Zbl | Zbl

[2] V. I. Arnold, Arnold's problems, Springer-Verlag, Berlin; Phasis, Moscow, 2005, 640 pp. | DOI | MR | MR | Zbl | Zbl

[3] V. I. Arnol'd, “Wave front evolution and equivariant Morse lemma”, Comm. Pure and Appl. Math., 29:6 (1976), 557–582 | DOI | MR | Zbl

[4] V. M. Zakalyukin, “Reconstructions of wave fronts depending on one parameter”, Funct. Anal. Appl., 10:2 (1976), 139–140 | DOI | MR | Zbl | Zbl

[5] V. M. Zakalyukin, “Singularities of convex hulls of smooth manifolds”, Funct. Anal. Appl., 11:3 (1977), 225–227 | DOI | MR | Zbl

[6] V. D. Sedykh, “Singularities of the convex hull of a curve in $\mathbb{R}^3$”, Funct. Anal. Appl., 11:1 (1977), 72–73 | DOI | MR | Zbl | Zbl

[7] V. D. Sedykh, “Moduli of singularities of convex hulls”, Russian Math. Surveys, 36:5 (1981), 175–176 | DOI | MR | Zbl | Zbl

[8] V. D. Sedykh, “Structure of the convex hull of a space curve”, J. Sov. Math., 33 (1986), 1140–1153 | MR | Zbl | Zbl

[9] V. D. Sedykh, “Functional moduli of singularities of convex hulls of manifolds of codimensions 1 and 2”, Math. USSR-Sb., 47:1 (1984), 223–236 | DOI | MR | Zbl | Zbl

[10] L. N. Bryzgalova, “Singularities of the maximum of a parametrically dependent function”, Funct. Anal. Appl., 11:1 (1977), 49–51 | DOI | MR | Zbl | Zbl

[11] L. N. Bryzgalova, “Maximum functions of a family of functions depending on parameters”, Funct. Anal. Appl., 12:1 (1978), 50–51 | DOI | MR | Zbl | Zbl

[12] V. I. Matov, “The topological classification of germs of the maximum and minimax functions of a family of functions in general position”, Russian Math. Surveys, 37:4 (1982), 127–128 | DOI | MR | Zbl | Zbl

[13] A. A. Davydov, “The quasi-Hölder property of the boundary of attainability”, Selecta Math. Soviet, 9:3 (1990), 229–234 | MR | Zbl | Zbl

[14] B. Jakubczyk, F. Przytycki, Singularities of $k$-tuples of vector fields, Diss. Math. (Rozprawy Mat.), 213, Państwowe Wydawn. Naukowe, Warszawa, 1984, 64 pp. | MR | Zbl

[15] R. Isaacs, Differential games. A mathematical theory with applications to warfare and pursuit, control and optimization, Wiley, New York–London–Sydney, 1965, xvii+384 pp. | MR | MR | Zbl | Zbl

[16] L. S. Pontryagin; V. G. Boltyanskii, R. V. Gamkrelidze, E. F. Mishchenko, The mathematical theory of optimal processes, Wiley, New York–London, 1962, viii+360 pp. | MR | MR | Zbl | Zbl

[17] V. I. Arnol'd, S. M. Guseĭn-Zade, A. N. Varchenko, Singularities of differentiable maps, v. I, Monogr. Math., 82, The classification of critical points, caustics and wave fronts, Birkhäuser, Boston, MA, 1985, xi+382 pp. | MR | MR | Zbl | Zbl

[18] R. E. Kalman, P. L. Falb, M. A. Arbib, Topics in mathematical system theory, McGraw-Hill, New York–Toronto, ON–London, 1969, xiv+358 pp. | MR | Zbl

[19] A. A. Davydov, Qualitative theory of control systems, Transl. Math. Monogr., 141, Amer. Math. Soc., Providence, RI, 1994, viii+147 pp. | MR | Zbl

[20] A. D. Myshkis, “O differentsialnykh neravenstvakh s lokalno ogranichennymi proizvodnymi”, Uchenye zapiski Kharkovskogo gosudarstvennogo un-ta im. A. M. Gorkogo, SKhKhKhVIII, Uchenye zapiski mekhaniko-matematicheskogo fakulteta i Kharkovskogo matematicheskogo obschestva, KhGU im. A. M. Gorkogo, Kharkov, 1964, 152–163

[21] N. N. Petrov, “Controllability of autonomous systems”, Differ. Equ., 4 (1972), 311–317 | MR | Zbl | Zbl

[22] N. N. Petrov, “Local controllability of autonomous systems”, Differ. Equ., 4 (1972), 632–639 | MR | Zbl | Zbl

[23] A. A. Davydov, “Local controllability of typical dynamical inequalities on surfaces”, Proc. Steklov Inst. Math., 209 (1995), 73–106 | MR | Zbl

[24] Yu. A. Grishina, A. A. Davydov, “Structural stability of simplest dynamical inequalities”, Proc. Steklov Inst. Math., 256 (2007), 80–91 | DOI | MR | Zbl

[25] V. M. Zakalyukin, A. N. Kurbatskii, “Envelope singularities of families of planes in control theory”, Proc. Steklov Inst. Math., 262 (2008), 66–79 | DOI | MR | Zbl

[26] V. M. Zakalyukin, A. N. Kurbatskii, “Vypuklye obolochki krivykh i osobennosti mnozhestva tranzitivnosti v $\mathbb{R}^3$”, Sovremennye problemy matematiki i mekhaniki, 4, Izd-vo Mosk. un-ta, M., 2009, 3–23

[27] V. M. Zakalyukin, A. N. Kurbatskii, “Convex hulls of surfaces with boundaries and corners and singularities of transitivity zone in $\mathbb R^3$”, Proc. Steklov Inst. Math., 268 (2010), 274–293 | DOI | MR | Zbl

[28] A. N. Kurbatskii, “Singularities of the transitivity zone of surfaces with boundaries in $\mathbb R^3$”, Russian Math. Surveys, 65:3 (2010), 583–585 | DOI | MR | Zbl

[29] V. M. Zakalyukin, “Singularities of convex hulls of smooth manifolds”, Funct. Anal. Appl., 11:3 (1977), 225–227 | DOI | MR | Zbl

[30] V. I. Arnold, Catastrophe theory, Springer-Verlag, Berlin, 1984, iv+79 pp. | MR | MR | Zbl | Zbl

[31] V. M. Zakalyukin, “Reconstructions of fronts and caustics depending on a parameter, and versality of mappings”, J. Sov. Math., 27:3 (1984), 2713–2735 | DOI | MR | Zbl

[32] V. V. Goryunov, V. M. Zakalyukin, “On stability of projections of Lagrangian varieties”, Funct. Anal. Appl., 38:4 (2004), 249–255 | DOI | MR | Zbl

[33] A. M. Vershik, V. Ya. Gershkovich, “Nonholonomic dynamical systems, geometry of distributions and variational problems”, Dynamical systems. VII, Encycl. Math. Sci., 16, Springer, Berlin, 1994, 1–81 | MR | Zbl

[34] P. Varaiya, A. B. Kurzhanskij, “The reachability problem under constant perturbations”, Dokl. Math., 61:3 (2000), 380–384 | MR | Zbl

[35] T. F. Filippova, “Differential equations of ellipsoidal estimates for reachable sets of a nonlinear dynamical control system”, Proc. Steklov Inst. Math., 271, suppl. 1 (2010), 75–84 | DOI | Zbl

[36] F. L. Chernousko, Otsenivanie fazovogo sostoyaniya dinamicheskikh sistem, Nauka, M., 1988, 320 pp. | MR | Zbl

[37] J. Palis (Jr.), W. de Melo, Geometric theory of dynamical systems. An introduction, Springer-Verlag, New York–Berlin, 1982, xii+198 pp. | MR | Zbl

[38] A. A. Andronov, L. S. Pontryagin, “Grubye sistemy”, Dokl. AN SSSR, 14:5 (1937), 247–250 | Zbl

[39] A. A. Davydov, “Structural stability of control systems on orientable surfaces”, Math. USSR-Sb., 72:1 (1992), 1–28 | DOI | MR | Zbl

[40] A. F. Filippov, “Stability for differential equations with discontinuous and multivalued right-hand sides”, Differ. Equ., 15:6 (1979), 720–727 | MR | Zbl | Zbl