Mots-clés : classification.
@article{RM_2012_67_2_a1,
author = {A. A. Davydov and V. M. Zakalyukin},
title = {Controllability of non-linear systems: generic singularities and their stability},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {255--280},
year = {2012},
volume = {67},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2012_67_2_a1/}
}
TY - JOUR AU - A. A. Davydov AU - V. M. Zakalyukin TI - Controllability of non-linear systems: generic singularities and their stability JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2012 SP - 255 EP - 280 VL - 67 IS - 2 UR - http://geodesic.mathdoc.fr/item/RM_2012_67_2_a1/ LA - en ID - RM_2012_67_2_a1 ER -
%0 Journal Article %A A. A. Davydov %A V. M. Zakalyukin %T Controllability of non-linear systems: generic singularities and their stability %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2012 %P 255-280 %V 67 %N 2 %U http://geodesic.mathdoc.fr/item/RM_2012_67_2_a1/ %G en %F RM_2012_67_2_a1
A. A. Davydov; V. M. Zakalyukin. Controllability of non-linear systems: generic singularities and their stability. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 67 (2012) no. 2, pp. 255-280. http://geodesic.mathdoc.fr/item/RM_2012_67_2_a1/
[1] S. Smale, “Global analysis and economics. I. Pareto optimum and a generalization of Morse theory”, Dynamical systems, Proc. Sympos. (Univ. Bahia, Salvador, 1971), Academic Press, New York, 1973, 531–544 | MR | MR | Zbl | Zbl
[2] V. I. Arnold, Arnold's problems, Springer-Verlag, Berlin; Phasis, Moscow, 2005, 640 pp. | DOI | MR | MR | Zbl | Zbl
[3] V. I. Arnol'd, “Wave front evolution and equivariant Morse lemma”, Comm. Pure and Appl. Math., 29:6 (1976), 557–582 | DOI | MR | Zbl
[4] V. M. Zakalyukin, “Reconstructions of wave fronts depending on one parameter”, Funct. Anal. Appl., 10:2 (1976), 139–140 | DOI | MR | Zbl | Zbl
[5] V. M. Zakalyukin, “Singularities of convex hulls of smooth manifolds”, Funct. Anal. Appl., 11:3 (1977), 225–227 | DOI | MR | Zbl
[6] V. D. Sedykh, “Singularities of the convex hull of a curve in $\mathbb{R}^3$”, Funct. Anal. Appl., 11:1 (1977), 72–73 | DOI | MR | Zbl | Zbl
[7] V. D. Sedykh, “Moduli of singularities of convex hulls”, Russian Math. Surveys, 36:5 (1981), 175–176 | DOI | MR | Zbl | Zbl
[8] V. D. Sedykh, “Structure of the convex hull of a space curve”, J. Sov. Math., 33 (1986), 1140–1153 | MR | Zbl | Zbl
[9] V. D. Sedykh, “Functional moduli of singularities of convex hulls of manifolds of codimensions 1 and 2”, Math. USSR-Sb., 47:1 (1984), 223–236 | DOI | MR | Zbl | Zbl
[10] L. N. Bryzgalova, “Singularities of the maximum of a parametrically dependent function”, Funct. Anal. Appl., 11:1 (1977), 49–51 | DOI | MR | Zbl | Zbl
[11] L. N. Bryzgalova, “Maximum functions of a family of functions depending on parameters”, Funct. Anal. Appl., 12:1 (1978), 50–51 | DOI | MR | Zbl | Zbl
[12] V. I. Matov, “The topological classification of germs of the maximum and minimax functions of a family of functions in general position”, Russian Math. Surveys, 37:4 (1982), 127–128 | DOI | MR | Zbl | Zbl
[13] A. A. Davydov, “The quasi-Hölder property of the boundary of attainability”, Selecta Math. Soviet, 9:3 (1990), 229–234 | MR | Zbl | Zbl
[14] B. Jakubczyk, F. Przytycki, Singularities of $k$-tuples of vector fields, Diss. Math. (Rozprawy Mat.), 213, Państwowe Wydawn. Naukowe, Warszawa, 1984, 64 pp. | MR | Zbl
[15] R. Isaacs, Differential games. A mathematical theory with applications to warfare and pursuit, control and optimization, Wiley, New York–London–Sydney, 1965, xvii+384 pp. | MR | MR | Zbl | Zbl
[16] L. S. Pontryagin; V. G. Boltyanskii, R. V. Gamkrelidze, E. F. Mishchenko, The mathematical theory of optimal processes, Wiley, New York–London, 1962, viii+360 pp. | MR | MR | Zbl | Zbl
[17] V. I. Arnol'd, S. M. Guseĭn-Zade, A. N. Varchenko, Singularities of differentiable maps, v. I, Monogr. Math., 82, The classification of critical points, caustics and wave fronts, Birkhäuser, Boston, MA, 1985, xi+382 pp. | MR | MR | Zbl | Zbl
[18] R. E. Kalman, P. L. Falb, M. A. Arbib, Topics in mathematical system theory, McGraw-Hill, New York–Toronto, ON–London, 1969, xiv+358 pp. | MR | Zbl
[19] A. A. Davydov, Qualitative theory of control systems, Transl. Math. Monogr., 141, Amer. Math. Soc., Providence, RI, 1994, viii+147 pp. | MR | Zbl
[20] A. D. Myshkis, “O differentsialnykh neravenstvakh s lokalno ogranichennymi proizvodnymi”, Uchenye zapiski Kharkovskogo gosudarstvennogo un-ta im. A. M. Gorkogo, SKhKhKhVIII, Uchenye zapiski mekhaniko-matematicheskogo fakulteta i Kharkovskogo matematicheskogo obschestva, KhGU im. A. M. Gorkogo, Kharkov, 1964, 152–163
[21] N. N. Petrov, “Controllability of autonomous systems”, Differ. Equ., 4 (1972), 311–317 | MR | Zbl | Zbl
[22] N. N. Petrov, “Local controllability of autonomous systems”, Differ. Equ., 4 (1972), 632–639 | MR | Zbl | Zbl
[23] A. A. Davydov, “Local controllability of typical dynamical inequalities on surfaces”, Proc. Steklov Inst. Math., 209 (1995), 73–106 | MR | Zbl
[24] Yu. A. Grishina, A. A. Davydov, “Structural stability of simplest dynamical inequalities”, Proc. Steklov Inst. Math., 256 (2007), 80–91 | DOI | MR | Zbl
[25] V. M. Zakalyukin, A. N. Kurbatskii, “Envelope singularities of families of planes in control theory”, Proc. Steklov Inst. Math., 262 (2008), 66–79 | DOI | MR | Zbl
[26] V. M. Zakalyukin, A. N. Kurbatskii, “Vypuklye obolochki krivykh i osobennosti mnozhestva tranzitivnosti v $\mathbb{R}^3$”, Sovremennye problemy matematiki i mekhaniki, 4, Izd-vo Mosk. un-ta, M., 2009, 3–23
[27] V. M. Zakalyukin, A. N. Kurbatskii, “Convex hulls of surfaces with boundaries and corners and singularities of transitivity zone in $\mathbb R^3$”, Proc. Steklov Inst. Math., 268 (2010), 274–293 | DOI | MR | Zbl
[28] A. N. Kurbatskii, “Singularities of the transitivity zone of surfaces with boundaries in $\mathbb R^3$”, Russian Math. Surveys, 65:3 (2010), 583–585 | DOI | MR | Zbl
[29] V. M. Zakalyukin, “Singularities of convex hulls of smooth manifolds”, Funct. Anal. Appl., 11:3 (1977), 225–227 | DOI | MR | Zbl
[30] V. I. Arnold, Catastrophe theory, Springer-Verlag, Berlin, 1984, iv+79 pp. | MR | MR | Zbl | Zbl
[31] V. M. Zakalyukin, “Reconstructions of fronts and caustics depending on a parameter, and versality of mappings”, J. Sov. Math., 27:3 (1984), 2713–2735 | DOI | MR | Zbl
[32] V. V. Goryunov, V. M. Zakalyukin, “On stability of projections of Lagrangian varieties”, Funct. Anal. Appl., 38:4 (2004), 249–255 | DOI | MR | Zbl
[33] A. M. Vershik, V. Ya. Gershkovich, “Nonholonomic dynamical systems, geometry of distributions and variational problems”, Dynamical systems. VII, Encycl. Math. Sci., 16, Springer, Berlin, 1994, 1–81 | MR | Zbl
[34] P. Varaiya, A. B. Kurzhanskij, “The reachability problem under constant perturbations”, Dokl. Math., 61:3 (2000), 380–384 | MR | Zbl
[35] T. F. Filippova, “Differential equations of ellipsoidal estimates for reachable sets of a nonlinear dynamical control system”, Proc. Steklov Inst. Math., 271, suppl. 1 (2010), 75–84 | DOI | Zbl
[36] F. L. Chernousko, Otsenivanie fazovogo sostoyaniya dinamicheskikh sistem, Nauka, M., 1988, 320 pp. | MR | Zbl
[37] J. Palis (Jr.), W. de Melo, Geometric theory of dynamical systems. An introduction, Springer-Verlag, New York–Berlin, 1982, xii+198 pp. | MR | Zbl
[38] A. A. Andronov, L. S. Pontryagin, “Grubye sistemy”, Dokl. AN SSSR, 14:5 (1937), 247–250 | Zbl
[39] A. A. Davydov, “Structural stability of control systems on orientable surfaces”, Math. USSR-Sb., 72:1 (1992), 1–28 | DOI | MR | Zbl
[40] A. F. Filippov, “Stability for differential equations with discontinuous and multivalued right-hand sides”, Differ. Equ., 15:6 (1979), 720–727 | MR | Zbl | Zbl