@article{RM_2012_67_2_a0,
author = {S. M. Aseev and K. O. Besov and A. V. Kryazhimskiy},
title = {Infinite-horizon optimal control problems in economics},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {195--253},
year = {2012},
volume = {67},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2012_67_2_a0/}
}
TY - JOUR AU - S. M. Aseev AU - K. O. Besov AU - A. V. Kryazhimskiy TI - Infinite-horizon optimal control problems in economics JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2012 SP - 195 EP - 253 VL - 67 IS - 2 UR - http://geodesic.mathdoc.fr/item/RM_2012_67_2_a0/ LA - en ID - RM_2012_67_2_a0 ER -
S. M. Aseev; K. O. Besov; A. V. Kryazhimskiy. Infinite-horizon optimal control problems in economics. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 67 (2012) no. 2, pp. 195-253. http://geodesic.mathdoc.fr/item/RM_2012_67_2_a0/
[1] D. Acemoglu, Introduction to modern economic growth, Princeton Univ. Press, Princeton, NJ, 2009, xviii+990 pp. | Zbl
[2] P. Aghion, P. Howitt, Endogenous growth theory, MIT Press, Cambridge, MA, 1998, 708 pp.
[3] K. J. Arrow, “Applications of control theory to economic growth”, Mathematics of the Decision Sciences, Part 2, Lectures Appl. Math., 12, Amer. Math. Soc., Providence, RI, 1968, 85–119 | MR | Zbl
[4] K. J. Arrow, M. Kurz, Public investment, the rate of return, and optimal fiscal policy, Johns Hopkins Press, Baltimore, MD, 1970, 218 pp.
[5] S. Aseev, K. Besov, S.-E. Ollus, T. Palokangas, “Optimal economic growth with a random environmental shock”, Dynamic systems, economic growth, and the environment, Dyn. Model. Econom. Econ. Finance, 12, eds. J. C. Cuaresma, T. Palokangas, A. Tarasyev, Springer, Berlin, 2010, 109–137 | DOI
[6] S. Aseev, K. Besov, S.-E. Ollus, T. Palokangas, “Optimal growth in a two-sector economy facing an expected random shock”, Trudy IMM UrO RAN, 17:2 (2011), 271–299
[7] S. Aseev, G. Hutschenreiter, A. Kryazhimskii, A dynamic model of optimal allocation of resources to R, IIASA Interim Report IR-02-016, Laxenburg, Austria, 2002, 45 pp. http://www.iiasa.ac.at/Admin/PUB/Documents/IR-02-016.pdf
[8] S. M. Aseev, A. V. Kryazhimskiy, “The Pontryagin maximum principle and transversality conditions for a class of optimal control problems with infinite time horizons”, SIAM J. Control Optim., 43:3 (2004), 1094–1119 | DOI | MR | Zbl
[9] S. M. Aseev, A. V. Kryazhimskiĭ, “The Pontryagin maximum principle for an optimal control problem with a functional specified by an improper integral”, Dokl. Math., 69:1 (2004), 89–91 | MR | Zbl
[10] S. M. Aseev, A. V. Kryazhimskii, “The Pontryagin maximum principle and problems of optimal economic growth”, Proc. Steklov Inst. Math., 257 (2007), 1–255 | DOI | MR | Zbl
[11] S. M. Aseev, A. V. Kryazhimskii, “On a class of optimal control problems arising in mathematical economics”, Proc. Steklov Inst. Math., 262 (2008), 10–25 | DOI | MR | Zbl
[12] S. Aseev, A. Kryazhimskii, A. Tarasyev, First order necessary optimality conditions for a class of infinite horizon optimal control problems, IIASA Interim Report IR-01-007, Laxenburg, Austria, 2001, 17 pp. http://www.iiasa.ac.at/Admin/PUB/Documents/IR-01-007.pdf
[13] S. M. Aseev, A. V. Kryazhimskij, A. M. Tarasyev, “The Pontryagin maximum principle and transversality conditions for an optimal control problem with infinite time interval”, Proc. Steklov Inst. Math., 233 (2001), 64–80 | MR | Zbl
[14] S. M. Aseev, V. M. Veliov, “Maximum principle for infinite-horizon optimal control problems with dominating discount”, Dynamics of Continuous, Discrete and Impulsive Systems, Ser. B: Applications Algorithms, 19 (2012), 43–63; Research Report 2011-06, ORCOS, Institute of Mathematical Methods in Economics, Vienna University of Technology, 2011, 21 pp. http://orcos.tuwien.ac.at/fileadmin/t/orcos/Research_Reports/2011-06.pdf
[15] J. P. Aubin, F. H. Clarke, “Shadow prices and duality for a class of optimal control problems”, SIAM J. Control Optim., 17:5 (1979), 567–586 | DOI | MR | Zbl
[16] E. J. Balder, “An existence result for optimal economic growth problems”, J. Math. Anal. Appl., 95:1 (1983), 195–213 | DOI | MR | Zbl
[17] R. J. Barro, X. Sala-i-Martin, Economic growth, New York, McGraw-Hill, 1995, 539 pp.
[18] Behavioral economics and its applications, eds. P. Diamond, H. Vartiainen, Princeton Univ. Press, Oxford, 2007, xvi+312 pp.
[19] R. Bellman, Dynamic programming, Princeton Univ. Press, Princeton, NJ, 1957, xxv+342 pp. | MR | Zbl
[20] L. M. Benveniste, J. A. Scheinkman, “Duality theory for dynamic optimization models of economics: the continuous time case”, J. Econom. Theory, 27:1 (1982), 1–19 | DOI | MR | Zbl
[21] V. I. Blagodatskikh, A. F. Filippov, “Differential inclusions and optimal control”, Proc. Steklov Inst. Math., 169 (1986), 199–259 | MR | Zbl | Zbl
[22] D. A. Carlson, A. B. Haurie, A. Leizarowitz, Infinite horizon optimal control. Deterministic and stochastic systems, Springer-Verlag, Berlin, 1991, xvi+332 pp. | Zbl
[23] D. Cass, “Optimum growth in an aggregative model of capital accumulation”, Rev. Econ. Stud., 32:3 (1965), 233–240 | DOI
[24] L. Cesari, Optimization – theory and applications. Problems with ordinary differential equations, Appl. Math. (N. Y.), 17, Springer-Verlag, New York, 1983, xiv+542 pp. | MR | Zbl
[25] A. C. Chiang, Elements of dynamic optimization, McGraw-Hill, Singapore, 1992, 327 pp.
[26] B. P. Demidovich, Lektsii po matematicheskoi teorii ustoichivosti, Nauka, M., 1967, 472 pp. ; “РџРёСЃСЊРјРѕ РІ СЂРμдакцию”, МатРμРј. замРμтки, 80:2 (2006), 320 | MR | Zbl
[27] A. V. Dmitruk, N. V. Kuz'kina, “Existence theorem in the optimal control problem on an infinite time interval”, Math. Notes, 78:4 (2005), 466–480 | DOI | MR | Zbl
[28] R. Dorfman, “An economic interpretation of optimal control theory”, Amer. Econ. Rev., 59 (1969), 817–831
[29] I. Ekeland, “Some variational problems arising from mathematical economics”, Mathematical economics (Montecatini Terme, 1986), Lectures Notes in Math., 1330, Springer, Berlin, 1988, 1–18 | DOI | MR | Zbl
[30] A. F. Filippov, “O nekotorykh voprosakh teorii optimalnogo regulirovaniya”, Vestn. Mosk. un-ta. Ser. matem., mekh., astron., fiz., khim., 1959, no. 2, 25–32 | Zbl
[31] A. F. Filippov, Differential equations with discontinuous right-hand sides, Mathematics and Its Applications: Soviet Series, 18, Kluwer, Dordrecht, 1988, x+304 pp. | MR | MR | Zbl | Zbl
[32] R. V. Gamkrelidze, “Optimal sliding states”, Soviet Math. Dokl., 3 (1962), 559–562 | MR | Zbl
[33] R. V. Gamkrelidze, Principles of optimal control theory, Math. Concepts Methods Sci. Engrg., 7, Plenum Press, New York–London, 1978, xii+175 pp. | MR | Zbl
[34] R. V. Gamkrelidze, “Skolzyaschie rezhimy v teorii optimalnogo upravleniya”, Topologiya, obyknovennye differentsialnye uravneniya, dinamicheskie sistemy, Sbornik obzornykh statei. 2. K 50-letiyu instituta, Tr. MIAN SSSR, 169, 1985, 180–193 | MR | Zbl
[35] F. R. Gantmacher, The theory of matrices, v. 1, 2, Chelsea, New York, 1959, x+374, ix+276 pp. | MR | MR | Zbl | Zbl
[36] B. V. Gnedenko, Kurs teorii veroyatnostei, URSS, M., 2001, 320 pp.
[37] D. Grass, J. P. Caulkins, G. Feichtinger, G. Tragler, D. A. Behrens, Optimal control of nonlinear processes. With applications in drugs, corruption, and terror, Springer-Verlag, Berlin, 2008, xx+551 pp. | DOI | MR | Zbl
[38] G. M. Grossman, E. Helpman, Innovation and growth in the global economy, MIT Press, Cambridge, MA, 1991, 375 pp.
[39] H. Halkin, “Necessary conditions for optimal control problems with infinite horizons”, Econometrica, 42:2 (1974), 267–272 | DOI | MR | Zbl
[40] Ph. Hartman, Ordinary differential equations, John Wiley Sons, Inc., New York–London–Sydney, 1964, xiv+612 pp. | MR | MR | Zbl | Zbl
[41] T. Kamihigashi, “Necessity of transversality conditions for infinite horizon problems”, Econometrica, 69:4 (2001), 995–1012 | DOI | MR | Zbl
[42] A. Liapounoff, Problème général de la stabilité du mouvement, Ann. of Math. Stud., 17, Princeton Univ. Press, Princeton, NJ; Oxford Univ. Press, London, 1947, iv+272 pp. ; A. Lyapunov, Obschaya zadacha ob ustoichivosti dvizheniya, Izd-vo Khark. matem. obsch., Kharkov, 1892, 250 pp.; Рђ. Ляпунов, “Рљ РІРѕРїСЂРѕСЃСѓ РѕР± устоРNoчивости РґРІРёР¶РμРЅРёСЏ”, РЎРѕРѕР±С‰. Харьк. матРμРј. РѕР±С‰., 3:6 (1893), 265–272, Р�Р·Рґ-РІРѕ Харьк. матРμРј. РѕР±С‰., Харьков | MR | Zbl
[43] Ph. Michel, “On the transversality condition in infinite horizon optimal problems”, Econometrica, 50:4 (1982), 975–985 | DOI | MR | Zbl
[44] L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, E. F. Mishchenko, The mathematical theory of optimal processes, Interscience Publishers John Wiley Sons, Inc., New York–London, 1962, viii+360 pp. | MR | MR | Zbl | Zbl
[45] F. P. Ramsey, “A mathematical theory of saving”, Econ. J., 38:152 (1928), 543–559 | DOI
[46] A. Seierstad, “Necessary conditions for nonsmooth, infinite-horizon optimal control problems”, J. Optim. Theory Appl., 103:1 (1999), 201–229 | DOI | MR | Zbl
[47] A. Seierstad, K. Sydsæter, Optimal control theory with economic applications, Adv. Textbooks Econom., 24, North-Holland, Amsterdam, 1987, xvi+445 pp. | MR | Zbl
[48] S. P. Sethi, G. L. Thompson, Optimal control theory. Applications to management science and economics, 2nd ed., Kluwer, Boston, MA, 2000, xviii+505 pp. | MR | Zbl
[49] K. Shell, “Applications of Pontryagin's maximum principle to economics”, Mathematical systems theory and economics, I, Proc. Internat. Summer School (Varenna, 1967), Lect. Notes Oper. Res. Math. Econ., 11, Springer, Berlin, 1969, 241–292 | MR | Zbl
[50] G. V. Smirnov, “Transversality condition for infinite-horizon problems”, J. Optim. Theory Appl., 88:3 (1996), 671–688 | DOI | MR | Zbl
[51] J. Warga, Optimal control of differential and functional equations, Academic Press, New York–London, 1972, xiii+531 pp. | MR | MR | Zbl
[52] M. L. Weitzman, Income, wealth, and the maximum principle, Harvard Univ. Press, Cambridge, MA, 2003, viii+341 pp. | Zbl
[53] J. J. Ye, “Nonsmooth maximum principle for infinite-horizon problems”, J. Optim. Theory Appl., 76:3 (1993), 485–500 | DOI | MR | Zbl