Infinite-horizon optimal control problems in economics
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 67 (2012) no. 2, pp. 195-253

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper extends optimal control theory to a class of infinite-horizon problems that arise in studying models of optimal dynamic allocation of economic resources. In a typical problem of this sort the initial state is fixed, no constraints are imposed on the behaviour of the admissible trajectories at large times, and the objective functional is given by a discounted improper integral. We develop the method of finite-horizon approximations in a broad context and use it to derive complete versions of the Pontryagin maximum principle for such problems. We provide sufficient conditions for the normality of infinite-horizon optimal control problems and for the validity of the ‘standard’ limit transversality conditions with time going to infinity. As a meaningful example, we consider a new two-sector model of optimal economic growth subject to a random jump in prices. Bibliography: 53 titles.
Keywords: dynamic optimization, Pontryagin maximum principle, infinite horizon, transversality conditions at infinity, optimal economic growth.
@article{RM_2012_67_2_a0,
     author = {S. M. Aseev and K. O. Besov and A. V. Kryazhimskiy},
     title = {Infinite-horizon optimal control problems in economics},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {195--253},
     publisher = {mathdoc},
     volume = {67},
     number = {2},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2012_67_2_a0/}
}
TY  - JOUR
AU  - S. M. Aseev
AU  - K. O. Besov
AU  - A. V. Kryazhimskiy
TI  - Infinite-horizon optimal control problems in economics
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2012
SP  - 195
EP  - 253
VL  - 67
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RM_2012_67_2_a0/
LA  - en
ID  - RM_2012_67_2_a0
ER  - 
%0 Journal Article
%A S. M. Aseev
%A K. O. Besov
%A A. V. Kryazhimskiy
%T Infinite-horizon optimal control problems in economics
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2012
%P 195-253
%V 67
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RM_2012_67_2_a0/
%G en
%F RM_2012_67_2_a0
S. M. Aseev; K. O. Besov; A. V. Kryazhimskiy. Infinite-horizon optimal control problems in economics. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 67 (2012) no. 2, pp. 195-253. http://geodesic.mathdoc.fr/item/RM_2012_67_2_a0/