On the relationship between rectangular convergence and spherical convergence of multiple Haar series
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 67 (2012) no. 1, pp. 186-187 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{RM_2012_67_1_a7,
     author = {G. G. Oniani},
     title = {On the relationship between rectangular convergence and spherical convergence of multiple {Haar} series},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {186--187},
     year = {2012},
     volume = {67},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2012_67_1_a7/}
}
TY  - JOUR
AU  - G. G. Oniani
TI  - On the relationship between rectangular convergence and spherical convergence of multiple Haar series
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2012
SP  - 186
EP  - 187
VL  - 67
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/RM_2012_67_1_a7/
LA  - en
ID  - RM_2012_67_1_a7
ER  - 
%0 Journal Article
%A G. G. Oniani
%T On the relationship between rectangular convergence and spherical convergence of multiple Haar series
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2012
%P 186-187
%V 67
%N 1
%U http://geodesic.mathdoc.fr/item/RM_2012_67_1_a7/
%G en
%F RM_2012_67_1_a7
G. G. Oniani. On the relationship between rectangular convergence and spherical convergence of multiple Haar series. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 67 (2012) no. 1, pp. 186-187. http://geodesic.mathdoc.fr/item/RM_2012_67_1_a7/

[1] T. Sh. Zerekidze, “Skhodimost kratnykh ryadov Fure–Khaara i silnaya differentsiruemost integralov”, Trudy Tbilis. matem. in-ta im. A. M. Razmadze AN GrSSR, 76 (1985), 80–99 | MR | Zbl

[2] G. G. Kemkhadze, “O skhodimosti sharovykh chastichnykh summ kratnykh ryadov Fure–Khaara”, Trudy Tbilis. matem. in-ta im. A. M. Razmadze AN GrSSR, 55 (1977), 27–38 | MR | Zbl

[3] G. G. Oniani, “On the divergence of multiple Fourier–Haar series”, Dokl. Math., 77:2 (2008), 203–204 | MR | Zbl