New integral representations of Whittaker functions for classical Lie groups
    
    
  
  
  
      
      
      
        
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 67 (2012) no. 1, pp. 1-92
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The present paper proposes new integral representations of $\mathfrak{g}$-Whittaker functions corresponding to an arbitrary semisimple Lie algebra $\mathfrak{g}$ with the integrand expressed in terms of matrix elements of the fundamental representations of $\mathfrak{g}$. For the classical Lie algebras $\mathfrak{sp}_{2\ell}$, $\mathfrak{so}_{2\ell}$, and $\mathfrak{so}_{2\ell+1}$ a modification of this construction is proposed, providing a direct generalization of the integral representation of $\mathfrak{gl}_{\ell+1}$-Whittaker functions first introduced by Givental. The Givental representation has a recursive structure with respect to the rank $\ell+1$ of the Lie algebra $\mathfrak{gl}_{\ell+1}$, and the proposed generalization to all classical Lie algebras retains this property. It was observed elsewhere that an integral recursion operator for the $\mathfrak{gl}_{\ell+1}$-Whittaker function in the Givental representation coincides with a degeneration of the Baxter $\mathscr{Q}$-operator for $\widehat{\mathfrak{gl}}_{\ell+1}$-Toda chains. In this paper $\mathscr{Q}$-operators for the affine Lie algebras $\widehat{\mathfrak{so}}_{2\ell}$, $\widehat{\mathfrak{so}}_{2\ell+1}$ and a twisted form of $\vphantom{\rule{0pt}{10pt}}\widehat{\mathfrak{gl}}_{2\ell}$ are constructed. It is then demonstrated that the relation between integral recursion operators for the generalized Givental representations and degenerate $\mathscr{Q}$-operators remains valid for all classical Lie algebras.
Bibliography: 33 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
Whittaker function, Toda chain, Baxter operator.
                    
                    
                    
                  
                
                
                @article{RM_2012_67_1_a0,
     author = {A. A. Gerasimov and D. R. Lebedev and S. V. Oblezin},
     title = {New integral representations of {Whittaker} functions for classical {Lie} groups},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {1--92},
     publisher = {mathdoc},
     volume = {67},
     number = {1},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2012_67_1_a0/}
}
                      
                      
                    TY - JOUR AU - A. A. Gerasimov AU - D. R. Lebedev AU - S. V. Oblezin TI - New integral representations of Whittaker functions for classical Lie groups JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2012 SP - 1 EP - 92 VL - 67 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RM_2012_67_1_a0/ LA - en ID - RM_2012_67_1_a0 ER -
%0 Journal Article %A A. A. Gerasimov %A D. R. Lebedev %A S. V. Oblezin %T New integral representations of Whittaker functions for classical Lie groups %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2012 %P 1-92 %V 67 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/RM_2012_67_1_a0/ %G en %F RM_2012_67_1_a0
A. A. Gerasimov; D. R. Lebedev; S. V. Oblezin. New integral representations of Whittaker functions for classical Lie groups. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 67 (2012) no. 1, pp. 1-92. http://geodesic.mathdoc.fr/item/RM_2012_67_1_a0/
