Mots-clés : Hermite–Padé approximants, multiple orthogonal polynomials
@article{RM_2011_66_6_a2,
author = {A. I. Aptekarev and A. Kuijlaars},
title = {Hermite{\textendash}Pad\'e approximations and multiple orthogonal polynomial ensembles},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {1133--1199},
year = {2011},
volume = {66},
number = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2011_66_6_a2/}
}
TY - JOUR AU - A. I. Aptekarev AU - A. Kuijlaars TI - Hermite–Padé approximations and multiple orthogonal polynomial ensembles JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2011 SP - 1133 EP - 1199 VL - 66 IS - 6 UR - http://geodesic.mathdoc.fr/item/RM_2011_66_6_a2/ LA - en ID - RM_2011_66_6_a2 ER -
A. I. Aptekarev; A. Kuijlaars. Hermite–Padé approximations and multiple orthogonal polynomial ensembles. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 66 (2011) no. 6, pp. 1133-1199. http://geodesic.mathdoc.fr/item/RM_2011_66_6_a2/
[1] Ch. Hermite, “Sur la fonction exponentielle”, C. R. Acad. Sci. Paris, 77 (1873), 18–24, 74–79, 226–233, 285–293 | Zbl
[2] A. Markoff, “Deux démonstrations de la convergence de certaines fractions continues”, Acta Math., 19:1 (1895), 93–104 | DOI | MR | MR | Zbl
[3] V. N. Sorokin, “Cyclic graphs and Apéry's theorem”, Russian Math. Surveys, 57:3 (2002), 535–571 | DOI | MR | Zbl
[4] W. Van Assche, “Multiple orthogonal polynomials, irrationality and transcendence”, Continued fractions: from analytic number theory to constructive approximation (University of Missouri–Columbia, Columbia, MO, USA, 1998), Contemp. Math., 236, Amer. Math. Soc., Providence, RI, 1999, 325–342 | MR | Zbl
[5] Ratsionalnye priblizheniya postoyannoi Eilera i rekurrentnye sootnosheniya, Sbornik statei, Sovr. probl. matem., 9, ed. A. I. Aptekarev, MIAN, M., 2007, 84 pp. | Zbl
[6] V. A. Kalyagin, “Hermite–Padé approximants and spectral analysis of nonsymmetric operators”, Russian Acad. Sci. Sb. Math., 82:1 (1995), 199–216 | DOI | MR | Zbl
[7] A. Aptekarev, V. Kaliaguine (Kalyagin), “Complex rational approximation and difference operators”, Proceedings of the 3rd International Conference on Functional Analysis and Approximation Theory (Acquafredda di Maratea, Italy, 1996), v. I, Rend. Circ. Mat. Palermo (2) Suppl., 52, Circolo Matematico di Palermo, Palermo, 1998, 3–21 | MR | Zbl
[8] A. I. Aptekarev, V. A. Kalyagin, E. B. Saff, “Higher-order three-term recurrences and asymptotics of multiple orthogonal polynomials”, Constr. Approx., 30:2 (2009), 175–223 | DOI | MR | Zbl
[9] P. M. Bleher, A. B. J. Kuijlaars, “Random matrices with external source and multiple orthogonal polynomials”, Int. Math. Res. Not., 2004, no. 3, 109–129 | DOI | MR | Zbl
[10] A. B. J. Kuijlaars, K. T.-R. McLaughlin, “A Riemann–Hilbert problem for biorthogonal polynomials”, J. Comput. Appl. Math., 178:1-2 (2005), 313–320 | DOI | MR | Zbl
[11] A. I. Aptekarev, P. M. Bleher, A. B. J. Kuijlaars, “Large $n$ limit of Gaussian random matrices with external source. II”, Comm. Math. Phys., 259:2 (2005), 367–389 | DOI | MR | Zbl
[12] A. I. Aptekarev, V. G. Lysov, D. N. Tulyakov, “Global eigenvalue distribution regime of random matrices with an anharmonic potential and an external source”, Theoret. Math. Phys., 159:1 (2009), 448–468 | DOI | MR | Zbl
[13] A. I. Aptekarev, V. G. Lysov, D. N. Tulyakov, “Random matrices with external source and the asymptotic behaviour of multiple orthogonal polynomials”, Sb. Math., 202:2 (2011), 155–206 | DOI | MR | Zbl
[14] P. Bleher, S. Delvaux, A. B. J. Kuijlaars, “Random matrix model with external source and a constrained vector equilibrium problem”, Comm. Pure Appl. Math., 64 (2011), 116–160 | DOI | MR | Zbl
[15] S. Delvaux, “Average characteristic polynomials for multiple orthogonal polynomial ensembles”, J. Approx. Theory, 162:5 (2010), 1033–1067 | DOI | MR | Zbl
[16] A. A. Gonchar, E. A. Rakhmanov, V. N. Sorokin, “Hermite–Padé approximants for systems of Markov-type functions”, Sb. Math., 188:5 (1997), 671–696 | DOI | MR | Zbl
[17] A. I. Aptekarev, V. G. Lysov, “Systems of Markov functions generated by graphs and the asymptotics of their Hermite–Padé approximants”, Sb. Math., 201:2 (2010), 183–234 | DOI | MR | Zbl
[18] A. I. Aptekarev, A. B. J. Kuijlaars, W. Van Assche, “Asymptotics of Hermite–Padé rational approximants for two analytic functions with separated pairs of branch points (case of genus 0)”, Int. Math. Res. Pap. IMRP, 2008, Art. ID rpm007, 128 pp. | DOI | MR | Zbl
[19] W. Van Assche, J. S. Geronimo, A. B. J. Kuijlaars, “Riemann–Hilbert problems for multiple orthogonal polynomials”, Special Functions 2000: Current Perspective and Future Directions (Tempe, AZ, USA, 2000), NATO Sci. Ser. II Math. Phys. Chem., 30, Kluwer Acad. Publ., Dordrecht, 2001, 23–59 | DOI | MR | Zbl
[20] E. Daems, A. B. J. Kuijlaars, “A Christoffel–Darboux formula for multiple orthogonal polynomials”, J. Approx. Theory, 130:2 (2004), 190–202 ; arXiv: math/0402031 | DOI | MR | Zbl
[21] P. M. Bleher, A. B. J. Kuijlaars, “Large $n$ limit of Gaussian random matrices with external source. I”, Comm. Math. Phys., 252:1-3 (2004), 43–76 | DOI | MR | Zbl
[22] P. M. Bleher, A. B. J. Kuijlaars, “Large $n$ limit of Gaussian random matrices with external source. III. Double scaling limit”, Comm. Math. Phys., 270 (2007), 481–517 | DOI | MR | Zbl
[23] A. A. Gonchar, E. A. Rakhmanov, “On convergence of simultaneous Padé approximants for systems of functions of Markov type”, Proc. Steklov Inst. Math., 157 (1983), 31–50 | MR | MR | Zbl | Zbl
[24] A. A. Gonchar, E. A. Rakhmanov, “On the equilibrium problem for vector potentials”, Russian Math. Surveys, 40:4 (1985), 183–184 | DOI | MR | Zbl
[25] A. Angelesco, “Sur deux extensions des fractions continues algébriques”, C. R. Acad. Sci. Paris, 168 (1919), 262–265 | Zbl
[26] E. M. Nikišin, “On simultaneous Padé approximants”, Math. USSR-Sb., 41:4 (1982), 409–425 | DOI | MR | Zbl | Zbl
[27] K. Driver, H. Stahl, “Simultaneous rational approximants to Nikishin-systems. I, II”, Acta Sci. Math. (Szeged), 60:1-2 (1995), 245–263 | MR | Zbl
[28] U. Fidalgo Prieto, G. López Lagomasino, “Nikishin systems are perfect”, Constr. Approx., 34:3 (2011), 297–356 ; arXiv: 1001.0554v1 | DOI
[29] A. I. Aptekarev, “Asymptotics of simultaneously orthogonal polynomials in the Angelesco case”, Math. USSR-Sb., 64:1 (1989), 57–84 | DOI | MR | Zbl | Zbl
[30] Zh. Bustamante, G. L. Lagomasino, “Hermite–Padé approximation for Nikishin systems of analytic functions”, Russian Acad. Sci. Sb. Math., 77:2 (1994), 367–384 | DOI | MR | Zbl
[31] E. M. Nikishin, “The asymptotic behavior of linear forms for joint Padé approximations”, Soviet Math. (Iz. VUZ), 30:2 (1986), 43–52 | MR | Zbl
[32] A. I. Aptekarev, “Strong asymptotics of multiply orthogonal polynomials for Nikishin systems”, Sb. Math., 190:5 (1999), 631–669 | DOI | MR | Zbl
[33] A. I. Aptekarev, “Asymptotics of Hermite–Padé approximants for two functions with branch points”, Dokl. Math., 78:2 (2008), 717–719 | DOI | MR | Zbl
[34] E. M. Nikishin, V. N. Sorokin, Rational approximations and orthogonality, Transl. Math. Monogr., 92, Amer. Math. Soc., Providence, RI, 1991, viii+221 pp. | MR | MR | Zbl | Zbl
[35] L. C. Young, Lectures on the calculus of variations and optimal control theory, Saunders, Philadelphia–London–Toronto, 1969, xi+331 pp. | MR | MR | Zbl | Zbl
[36] E. A. Rakhmanov, “The asymptotics of Hermite–Padé polynomials for two Markov-type functions”, Sb. Math., 202:1 (2011), 127–134 | DOI | MR | Zbl
[37] A. A. Gonchar, E. A. Rakhmanov, “Equilibrium measure and the distribution of zeros of extremal polynomials”, Math. USSR-Sb., 53:1 (1986), 119–130 | DOI | MR | Zbl
[38] R. T. Baumel, J. L. Gammel, J. Nuttall, “Asymptotic form of Hermite–Padé polynomials”, IMA J. Appl. Math., 27:3 (1981), 335–357 | DOI | MR | Zbl
[39] J. Nuttall, “Hermite–Padé approximants to functions meromorphic on a Riemann surface”, J. Approx. Theory, 32:3 (1981), 233–240 | DOI | MR | Zbl
[40] J. Nuttall, “Asymptotics of diagonal Hermite–Padé polynomials”, J. Approx. Theory, 42:4 (1984), 299–386 | DOI | MR | Zbl
[41] C. L. Siegel, Topics in complex function theory, v. I, Elliptic functions and uniformization theory, Wiley, New York–London–Sydney, 1969, ix+186 pp. ; v. II, Automorphic functions and Abelian integrals, Wiley, New York, 1971, xii+193 pp. | MR | Zbl | MR | Zbl
[42] A. I. Aptekarev, V. A. Kalyagin, V .G. Lysov, D. N. Toulyakov, “Equilibrium of vector potentials and uniformization of the algebraic curves of genus 0”, J. Comput. Appl. Math., 233:3 (2009), 602–616 | DOI | MR | Zbl
[43] M. L. Mehta, M. Gaudin, “On the density of eigenvalues of a random matrix”, Nuclear Phys., 18 (1960), 420–427 | DOI | MR | Zbl
[44] M. L. Mehta, Random matrices, 1st edition, Academic Press, New York, 1967, x+259 pp. ; Pure Appl. Math. (Amst.), 142, 3rd edition, Elsevier/Academic Press, Amsterdam, 2004, xviii+688 pp. | MR | Zbl | MR | Zbl
[45] P. Deift, Orthogonal polynomials and random matrices: a Riemann–Hilbert approach, Courant Lect. Notes Math., 3, New York University, Courant Institute of Mathematical Sciences, New York; Amer. Math. Soc., Providence, RI, 1999, viii+273 pp. | MR | Zbl
[46] P. Deift, X. Zhou, “A steepest descent method for oscillatory Riemann–Hilbert problems. Asymptotics for the MKdV equation”, Ann. of Math. (2), 137:2 (1993), 295–368 | DOI | MR | Zbl
[47] V. G. Lysov, “Strong asymptotics of the Hermite–Padé approximants for a system of Stieltjes functions with Laguerre weight”, Sb. Math., 196:12 (2005), 1815–1840 | DOI | MR | Zbl
[48] P. Deift, T. Kriecherbauer, K. T.-R. McLaughlin, “New results on the equilibrium measure for logarithmic potentials in the presence of an external field”, J. Approx. Theory, 95:3 (1998), 388–475 | DOI | MR | Zbl
[49] P. Deift, T. Kriecherbauer, K. T.-R. McLaughlin, S. Venakides, X. Zhou, “Uniform asymptotics for polynomials orthogonal with respect to varying exponential weights and applications to universality questions in random matrix theory”, Comm. Pure Appl. Math., 52:11 (1999), 1335–1425 | 3.0.CO;2-1 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[50] A. B. J. Kuijlaars, K. T.-R. McLaughlin, W. Van Assche, M. Vanlessen, “The Riemann–Hilbert approach to strong asymptotics for orthogonal polynomials on $[-1,1]$”, Adv. Math., 188:2 (2004), 337–398 | DOI | MR | Zbl
[51] A. I. Aptekarev, “Sharp constants for rational approximations of analytic functions”, Sb. Math., 193:1 (2002), 1–72 | DOI | MR | Zbl
[52] G. W. Anderson, A. Guionnet, O. Zeitouni, An introduction to random matrices, Cambridge Stud. Adv. Math., 118, Cambridge University Press, Cambridge, 2010, xiv+492 pp. | MR | Zbl
[53] P. Forrester, Log-gases and random matrices, London Math. Soc. Monogr. Ser., 34, Princeton University Press, Princeton, NJ, 2010, xiv+791 pp. | MR | Zbl
[54] G. Akemann, J. Baik, Ph. Di Francesco (eds.), The Oxford handbook of random matrix theory, Oxford Univesity Press, Oxford, 2011, xxxi+919 pp. | Zbl
[55] A. B. J. Kuijlaars, “Multiple orthogonal polynomial ensembles”, Recent trends in orthogonal polynomials and approximation theory, Contemp. Math., 507, eds. J. Arvesú, F. Marcellán, A. Martínez-Finkelshtein, Amer. Math. Soc., Providence, RI, 2010, 155–176 | MR | Zbl
[56] P. Deift, D. Gioev, Random matrix theory: invariant ensembles and universality, Courant Lect. Notes Math., 18, Amer. Math. Soc., Providence, RI, 2009, x+217 pp. | MR | Zbl
[57] A. Borodin, “Biorthogonal ensembles”, Nuclear Phys. B, 536:3 (1999), 704–732 | DOI | MR | Zbl
[58] K. Johansson, “Random matrices and determinantal processes”, Mathematical statistical physics, Elsevier, Amsterdam, 2006, 1–55 | MR | Zbl
[59] P. Desrosiers, P. J. Forrester, “A note on biorthogonal ensembles”, J. Approx. Theory, 152:2 (2008), 167–187 | DOI | MR | Zbl
[60] W. Van Assche, “Nearest neighbor recurrence relations for multiple orthogonal polynomials”, J. Approx. Theory, 163:10 (2011), 1427–1448 ; arXiv: 1104.3778 | DOI | Zbl
[61] C. Álvarez-Fernández, U. Fidalgo Prieto, M. Mañas, “Multiple orthogonal polynomials of mixed type: Gauss–Borel factorization and the multi-component 2D Toda hierarchy”, Adv. Math., 227:4 (2011), 1451–1525 | DOI | MR | Zbl
[62] E. Daems, A. B. J. Kuijlaars, “Multiple orthogonal polynomials of mixed type and non-intersecting Brownian motions”, J. Approx. Theory, 146:1 (2007), 91–114 | DOI | MR | Zbl
[63] A. S. Fokas, A. R. Its, A. V. Kitaev, “The isomonodromy approach to matrix models in 2D quantum gravity”, Comm. Math. Phys., 147:2 (1992), 395–430 | DOI | MR | Zbl
[64] E. Brézin, S. Hikami, “Universal singularity at the closure of a gap in a random matrix theory”, Phys. Rev. E (3), 57:4 (1998), 4140–4149 | DOI | MR
[65] E. Brézin, S. Hikami, “Level spacing of random matrices in an external source”, Phys. Rev. E (3), 58:6, Part A (1998), 7176–7185 | DOI | MR
[66] P. Zinn-Justin, “Random Hermitian matrices in an external field”, Nuclear Phys. B, 497 (1997), 725–732 | DOI | MR | Zbl
[67] C. Itzykson, J. B. Zuber, “The planar approximation. II”, J. Math. Phys., 21:3 (1980), 411–421 | DOI | MR | Zbl
[68] E. B. Saff, V. Totik, Logarithmic potentials with external fields, Grundlehren Math. Wiss., 316, Springer-Verlag, Berlin, 1997, xvi+505 pp. | MR | Zbl
[69] A. I. Aptekarev, A. Branquinho, W. Van Assche, “Multiple orthogonal polynomials for classical weights”, Trans. Amer. Math. Soc., 355:10 (2003), 3887–3914 | DOI | MR | Zbl
[70] L. A. , “On the spectrum of random matrices”, Theoret. Math. Phys., 10:1 (1972), 67–74 | DOI | MR
[71] C. A. Tracy, H. Widom, “The Pearcey process”, Comm. Math. Phys., 263:2 (2006), 381–400 | DOI | MR | Zbl
[72] K. T.-R. McLaughlin, “Asymptotic analysis of random matrices with external source and a family of algebraic curves”, Nonlinearity, 20:7 (2007), 1547–1571 | DOI | MR | Zbl
[73] E. A. Rakhmanov, “Equilibrium measure and the distribution of zeros of the extremal polynomials of a discrete variable”, Sb. Math., 187:8 (1996), 1213–1228 | DOI | MR | Zbl
[74] P. D. Dragnev, E. B. Saff, “Constrained energy problems with applications to orthogonal polynomials of a discrete variable”, J. Anal. Math., 72:1 (1997), 223–259 | DOI | MR | Zbl
[75] J. Baik, T. Kriecherbauer, K. T.-R. McLaughlin, P. D. Miller, Discrete orthogonal polynomials. Asymptotics and applications, Ann. of Math. Stud., 164, Princeton University Press, Princeton, NJ, 2007, viii+170 pp. | MR | Zbl
[76] P. Bleher, A. Its, “Double scaling limit in the random matrix model: the Riemann–Hilbert approach”, Comm. Pure Appl. Math., 56:4 (2003), 433–516 | DOI | MR | Zbl
[77] T. Claeys, A. B. J. Kuijlaars, “Universality of the double scaling limit in random matrix models”, Comm. Pure Appl. Math., 59:11 (2006), 1573–1603 | DOI | MR | Zbl
[78] S. Karlin, J. McGregor, “Coincidence probabilities”, Pacific J. Math., 9:4 (1959), 1141–1164 ; http://projecteuclid.org/euclid.pjm/1103038889 | MR | Zbl
[79] A. B. J. Kuijlaars, A. Martínez-Finkelshtein, F. Wielonsky, “Non-intersecting squared Bessel paths and multiple orthogonal polynomials for modified Bessel weights”, Comm. Math. Phys., 286:1 (2009), 217–275 | DOI | MR | Zbl
[80] A. B. J. Kuijlaars, A. Martínez-Finkelshtein, F. Wielonsky, Non-intersecting squared Bessel paths: critical time and double scaling limit, 2010, arXiv: 1011.1278
[81] S. Delvaux, A. B. J. Kuijlaars, P. Román, L. Zhang, Non-intersecting squared Bessel paths with one positive starting and ending point, 2011, arXiv: 1105.2481
[82] M. L. Mehta, “A method of integration over matrix variables”, Comm. Math. Phys., 79:3 (1981), 327–340 | DOI | MR | Zbl
[83] N. M. Ercolani, K. T.-R. McLaughlin, “Asymptotics and integrable structures for biorthogonal polynomials associated to a random two-matrix model”, Phys. D, 152-153 (2001), 232–268 | DOI | MR | Zbl
[84] M. Duits, D. Geudens, A. B. J. Kuijlaars, “A vector equilibrium problem for the two-matrix model in the quartic/quadratic case”, Nonlinearity, 24:3 (2011), 951–993 | DOI | MR | Zbl
[85] B. Eynard, M. L. Mehta, “Matrices coupled in a chain. I. Eigenvalue correlations”, J. Phys. A, 31:19 (1998), 4449–4456 | DOI | MR | Zbl
[86] M. L. Mehta, P. Shukla, “Two coupled matrices: eigenvalue correlations and spacing functions”, J. Phys. A, 27:23 (1994), 7793–7803 | DOI | MR | Zbl
[87] S. Delvaux, “Average characteristic polynomials in the two-matrix model”, J. Math. Phys., 52:1 (2011), 013513, 23 pp. | DOI | MR
[88] M. Bertola, B. Eynard, J. Harnad, “Differential systems for biorthogonal polynomials appearing in 2-matrix models and the associated Riemann–Hilbert problem”, Comm. Math. Phys., 243:2 (2003), 193–240 | DOI | MR | Zbl
[89] M. Duits, A. B. J. Kuijlaars, “Universality in the two matrix model: a Riemann–Hilbert steepest descent analysis”, Comm. Pure Appl. Math., 62:8 (2009), 1076–1153 | DOI | MR | Zbl
[90] M. Duits, A. B. J. Kuijlaars, M. Y. Mo, The Hermitian two matrix model with an even quartic potential, Mem. Amer. Math. Soc., Amer. Math. Soc., Providence, RI, 2011, v+105 pp. | DOI
[91] M. Y. Mo, “Universality in the two matrix model with a monomial quartic and a general even polynomial potential”, Comm. Math. Phys., 291:3 (2009), 863–894 | DOI | MR | Zbl