Mots-clés : orthogonal polynomials, Padé approximants
@article{RM_2011_66_6_a1,
author = {A. I. Aptekarev and V. I. Buslaev and A. Mart{\'\i}nez-Finkelshtein and S. P. Suetin},
title = {Pad\'e approximants, continued~fractions, and orthogonal polynomials},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {1049--1131},
year = {2011},
volume = {66},
number = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2011_66_6_a1/}
}
TY - JOUR AU - A. I. Aptekarev AU - V. I. Buslaev AU - A. Martínez-Finkelshtein AU - S. P. Suetin TI - Padé approximants, continued fractions, and orthogonal polynomials JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2011 SP - 1049 EP - 1131 VL - 66 IS - 6 UR - http://geodesic.mathdoc.fr/item/RM_2011_66_6_a1/ LA - en ID - RM_2011_66_6_a1 ER -
%0 Journal Article %A A. I. Aptekarev %A V. I. Buslaev %A A. Martínez-Finkelshtein %A S. P. Suetin %T Padé approximants, continued fractions, and orthogonal polynomials %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2011 %P 1049-1131 %V 66 %N 6 %U http://geodesic.mathdoc.fr/item/RM_2011_66_6_a1/ %G en %F RM_2011_66_6_a1
A. I. Aptekarev; V. I. Buslaev; A. Martínez-Finkelshtein; S. P. Suetin. Padé approximants, continued fractions, and orthogonal polynomials. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 66 (2011) no. 6, pp. 1049-1131. http://geodesic.mathdoc.fr/item/RM_2011_66_6_a1/
[1] G. Frobenius, “Ueber Relationen zwischen den Näherungsbruchen von Potenzreihen”, Borchardt J., XC (1880), 1–17 | Zbl
[2] H. Padé, “Sur la représentation approchée d'une fonction par des fractions rationnelles”, Ann. Sci. École Norm. Sup. (3), IX, Suppl. (1892), 3–93 ; http://www.numdam.org/item?id=ASENS_1892_3_9__S3_0 | MR | Zbl
[3] P. L. Chebyshëv, “O nepreryvnykh drobyakh”, Uchenye zap. Imp. akad. nauk, III (1855), 636–664; ПолноРμ собраниРμ сочинРμРЅРёРNo, II, Р�Р·Рґ-РІРѕ РђРќ РЎРЎРЎР , Рњ.–Р›., 1948, 103–126; P. Tchébycheff, “Sur les fractions continues”, J. de Math. Pures et Appl. Sér. 2, 3 (1858), 289–323
[4] A. Markoff, “Deux démonstrations de la convergence de certaines fractions continues”, Acta Math., 19:1 (1895), 93–104 | DOI | MR | MR | Zbl
[5] T. I. Stiltes, Issledovaniya o nepreryvnykh drobyakh, ONTI, Kharkov–Kiev, 1936; T. J. Stieltjes, “Recherches sur les fractions continues”, Reprint of Ann. Fac. Sci. Toulouse Sci. Math. Sci. Phys. 8:4 (1894), J76–J122, Ann. Fac. Sci. Toulouse Math. (6), 4:3 (1995), J76–J122 ; ; T.-J. Stieltjes, “Recherches sur les fractions continues”, Reprint of Ann. Fac., Suite et fin, Ann. Fac. Sci. Toulouse Sci. Math. Sci. Phys. 9:1 (1895), A5–A47, Ann. Fac. Sci. Toulouse Math. (6), 4:4 (1995), A5–A47 ; http://www.numdam.org/item?id=AFST_1995_6_4_3_J76_0http://www.numdam.org/item?id=AFST_1995_6_4_4_A5_0 | MR | Zbl | MR | Zbl
[6] O. Perron, Die Lehre von den Kettenbrüchen. Band II. Analytisch-funktionentheoretische Kettenbrüche, Teubner, Stuttgart, 1957, vi+316 pp. | MR | Zbl
[7] H. S. Wall, Analytic theory of continued fractions, Chelsea, New York, 1973
[8] G. A. Baker, Jr., P. Graves-Morris, Padé approximants. Part I. Basic theory, Encyclopedia Math. Appl., 13, Addison-Wesley, Reading, MA, 1981, xx+325 pp. ; G. A. Baker Jr., P. Graves-Morris, Padé approximants. Part II. Extensions and applications, Encyclopedia Math. Appl., 14, Addison-Wesley, Reading, MA, 1981, xviii+215 pp. | MR | MR | MR | Zbl | Zbl | Zbl
[9] W. B. Jones, W. J. Thron, Continued fractions. Analytic theory and applications, Encyclopedia Math. Appl., 11., Addison-Wesley, Reading, MA, 1980, xxix+428 pp. | MR | MR | Zbl
[10] N. I. Akhiezer, “Chebyshevskoe napravlenie v teorii approksimatsii”, Matematika XIX veka, Vyp. 3, eds. A. N. Kolmogorov, A. P. Yushkevich, Nauka, M., 1987, 9–79 | MR | Zbl
[11] E. M. Nikishin, V. N. Sorokin, Rational approximations and orthogonality, Transl. Math. Monogr., 92, AMS, Providence, RI, 1991, viii+221 pp. | MR | MR | Zbl | Zbl
[12] A. A. Gonchar, “Rational approximation of analytic functions”, Proc. Steklov Inst. Math., 272, suppl. 2 (2011), 44–57 | DOI | MR
[13] W. Van Assche, “Padé and Hermite–Padé approximation and orthogonality”, Surv. Approx. Theory, 2 (2006), 61–91 ; arXiv: math/0609094 | MR | Zbl
[14] A.-L. Cauchy, Cours d'analyse de l'École Royale Polytechnique. Première partie. Analyse algébrique, L'Imprimerie Royale, Paris, 1821 ; Instrumenta Rationis. Sources for the History of Logic in the Modern Age, VII, Cooperativa Libraria Universitaria Editrice Bologna, Bologna, 1992, clxviii+607 pp. ; http://mathdoc.emath.fr/cgi-bin/oeitem?id=OE_CAUCHY_2_3_P5_0 | Zbl | MR | Zbl
[15] C. G. J. Jacobi, “Über die Darstellung einer Reihe gegebner Werthe durch eine gebrochne rationale Function”, J. Reine Angew. Math., 30 (1846), 127–156 | DOI | Zbl
[16] Ch. Hermite, “Sur la fonction exponentielle”, C. R. Acad. Sci. Paris, 77 (1873), 18–24, 74–79, 226–233, 285–293 | Zbl
[17] J. Hadamard, “Essai sur l'étude des fonctions données par leur développement de Taylor”, J. Math. (4), VIII (1892), 101–186 (Thèse. Gauthier-Villars, Paris) | Zbl
[18] R. de Montessus, “Sur les fractions continues algébriques”, Bull. Soc. Math. France, 30 (1902), 28–36 | MR | Zbl
[19] A. A. Gončar, “On the convergence of Padé approximants”, Math. USSR-Sb., 21:1 (1973), 155–166 | DOI | MR | Zbl
[20] A. A. Gončar, “The rate of rational approximation and the property of single-valuedness of an analytic function in the neighborhood of an isolated singular point”, Math. USSR-Sb., 23:2 (1974), 254–270 | DOI | MR | Zbl
[21] A. A. Gončar, “On convergence of Padé approximants for some classes of meromorphic functions”, Math. USSR-Sb., 26:4 (1975), 555–575 | DOI | MR | Zbl
[22] A. A. Gončar, “On the convergence of generalized Padé approximants of meromorphic functions”, Math. USSR-Sb., 27:4 (1975), 503–514 | DOI | MR | Zbl
[23] A. A. Gončar, “On the speed of rational approximation of some analytic functions”, Math. USSR-Sb., 34:2 (1978), 131–145 | DOI | MR | Zbl | Zbl
[24] A. A. Gonchar, “5.6. Rational approximation of analytic functions”, J. Soviet Math., 26:5 (1984), 2218–2220 | DOI | MR
[25] A. A. Gonchar, G. López Lagomasino, “On Markov's theorem for multipoint Padé approximants”, Math. USSR-Sb., 34:4 (1978), 449–459 | DOI | MR | Zbl
[26] A. A. Gonchar, E. A. Rakhmanov, “On convergence of simultaneous Padé approximants for systems of functions of Markov type”, Proc. Steklov Inst. Math., 157 (1983), 31–50 | MR | Zbl | Zbl
[27] A. A. Gončar, “Poles of rows of the Padé table and meromorphic continuation of functions”, Math. USSR-Sb., 43:4 (1982), 527–546 | DOI | MR | Zbl | Zbl
[28] A. A. Gonchar, “On uniform convergence of diagonal Padé approximants”, Math. USSR Sb., 46:4 (1983), 539–559 | DOI | MR | Zbl | Zbl
[29] A. A. Gonchar, “O skhodimosti diagonalnykh approksimatsii Pade v sfericheskoi metrike”, Matematicheskie struktury, vychislitelnaya matematika, matematicheskoe modelirovanie, Trudy, posvyaschennye 70-letiyu akademika L. Ilieva, Sofiya, 1984, 29–35 | MR | Zbl
[30] A. A. Gonchar, “On the degree of rational approximation of analytic functions”, Proc. Steklov Inst. Math., 166 (1986), 53–61 | MR | Zbl | Zbl
[31] A. A. Gonchar, “Rational approximation of analytic functions”, Linear and complex analysis problems book, Lecture Notes in Math., 1043, Springer-Verlag, Berlin, 1984, 471–474 | DOI
[32] J. Nuttall, “The convergence of Padé approximants of meromorfic functions”, J. Math. Anal. Appl., 31 (1970), 147–153 | DOI | MR | Zbl
[33] J. Nuttall, “The convergence of certain Padé approximants”, Proceedings of the International Conference of Padé Approximants, Continued Fractions and Related Topics (Univ. Colorado, Boulder, CO, 1972), Rocky Mountain J. Math., 4, 1974, 269–272 | DOI | MR | Zbl
[34] J. L. Gammel, J. Nuttall, “Convergence of Padé approximants to quasianalytic functions beyond natural boundaries”, J. Math. Anal. Appl., 43 (1973), 694–696 | DOI | MR | Zbl
[35] J. Nuttall, “The convergence of Padé approximants to functions with branch points”, Padé and rational approximation, Proc. Internat. Sympos. (University of South Florida, Tampa, FL, 1976), Academic Press, New York, 1977, 101–109 | MR | Zbl
[36] J. Nuttall, R. S. Singh, “Orthogonal polynomials and Padé approximants associated with a system of arcs”, J. Approx. Theory, 21 (1977), 1–42 | DOI | MR | Zbl
[37] J. Nuttall, “Sets of minimal capacity Padé approximants and the bubble problem”, Bifurcation phenomena in mathematical physics and related topics, eds. C. Bardos and D. Bessis, Reidel, Dordrecht, 1980, 185–201 | MR | Zbl
[38] J. Nuttall, “Hermite–Padé approximants to functions meromorphic on a Riemann surface”, J. Approx. Theory, 32:3 (1981), 233–240 | DOI | MR | Zbl
[39] J. Nuttall, “The convergence of Padé approximants and their generalizations”, The Riemann problem, complete integrability and arithmetic applications (Bures-sur-Yvette, New York, 1979–1980), Lecture Notes in Math., 925, Springer, Berlin–New York, 1982, 246–257 | DOI | MR | Zbl
[40] J. Nuttall, “Asymptotics of diagonal Hermite–Padé polynomials”, J. Approx. Theory, 42:4 (1984), 299–386 | DOI | MR | Zbl
[41] D. Damanik, R. Killip, B. Simon, “Necessary and sufficient conditions in the spectral theory of Jacobi matrices and Schrödinger operators”, Int. Math. Res. Not., 2004, no. 22, 1087–1097 | DOI | MR | Zbl
[42] B. Simon, A. Zlatoš, “Sum rules and the Szegő condition for orthogonal polynomials on the real line”, Comm. Math. Phys., 242:3 (2003), 393–423 | DOI | MR | Zbl
[43] E. A. Rahmanov, “Convergence of diagonal Padé approximants”, Math. USSR-Sb., 33:2 (1977), 243–260 | DOI | MR | Zbl
[44] S. N. Bernshtein, O mnogochlenakh, ortogonalnykh v konechnom intervale, ONTI, Kharkov, 1937
[45] G. Szegő, Orthogonal polynomials, Amer. Math. Soc. Colloq. Publ., 23, Amer. Math. Soc., Providence, RI, 1959, ix+421 pp. | MR | Zbl | Zbl
[46] E. A. Rakhmanov, “On asymptotic properties of polynomials orthogonal on the real axis”, Math. USSR-Sb., 47:1 (1984), 155–193 | DOI | MR | Zbl | Zbl
[47] A. A. Gonchar, E. A. Rakhmanov, “Equilibrium measure and the distribution of zeros of extremal polynomials”, Math. USSR-Sb., 53:1 (1986), 119–130 | DOI | MR | Zbl
[48] A. A. Gonchar, E. A. Rakhmanov, “On the equilibrium problem for vector potentials”, Russian Math. Surveys, 40:4 (1985), 183–184 | DOI | MR | Zbl
[49] A. A. Gonchar, E. A. Rakhmanov, “Equilibrium distributions and degree of rational approximation of analytic functions”, Math. USSR Sb., 62:2 (1989), 305–348 | DOI | MR | Zbl | Zbl
[50] H. N. Mhaskar, E. B. Saff, “Extremal problems for polynomials with exponential weights”, Trans. Amer. Math. Soc., 285:1 (1984), 203–234 | DOI | MR | Zbl
[51] E. B. Saff, V. Totik, Logarithmic potentials with external fields, Grundlehren Math. Wiss., 316, Springer-Verlag, Berlin, 1997, xvi+505 pp. | MR | Zbl
[52] E. A. Rakhmanov, “On the asymptotic properties of polynomials orthogonal on the real axis”, Dokl. Akad. Nauk SSSR, 261:2 (1981), 282–284 | MR | Zbl
[53] A. Angelesco, “Sur deux extensions des fractions continues algébriques”, C. R. Acad. Sci. Paris, 168 (1919), 262–265 | Zbl
[54] A. I. Aptekarev, “Asymptotics of simultaneously orthogonal polynomials in the Angelesco case”, Math. USSR-Sb., 64:1 (1989), 57–84 | DOI | MR | Zbl | Zbl
[55] H. N. Mhaskar, E. B. Saff, “Weighted polynomials on finite and infinite intervals: a unified approach”, Bull. Amer. Math. Soc. (N.S.), 11:2 (1984), 351–354 | DOI | MR | Zbl
[56] H. N. Mhaskar, E. B. Saff, “Polynomials with Laguerre weights in $L^p$”, Rational approximation and interpolation (Tampa, FL, 1983), Lecture Notes in Math., 1105, Springer, Berlin, 1984, 511–523 | DOI | MR | Zbl
[57] H. N. Mhaskar, E. B. Saff, “Where does the sup norm of a weighted polynomial live? A generalization of incomplete polynomials”, Constr. Approx., 1:1 (1985), 71–91 | DOI | MR | Zbl
[58] P. Deift, Orthogonal polynomials and random matrices: a Riemann–Hilbert approach, Courant Lect. Notes Math., 3, New York University, Courant Institute of Mathematical Sciences, New York; Amer. Math. Soc., Providence, RI, 1999, viii+273 pp. | MR | Zbl
[59] P. Deift, T. Kriecherbauer, K. T.-R. McLaughlin, S. Venakides, X. Zhou, “Uniform asymptotics for orthogonal polynomials”, Proceedings of the International Congress of Mathematicians, Vol. III (Berlin, 1998), Doc. Math., Extra Vol. III, 1998, 491–501 | MR | Zbl
[60] A. I. Aptekarev, V. G. Lysov, D. N. Tulyakov, “Global eigenvalue distribution regime of random matrices with an anharmonic potential and an external source”, Theoret. Math. Phys., 159:1 (2009), 448–468 | DOI | MR | Zbl
[61] A. I. Aptekarev, V. G. Lysov, “Systems of Markov functions generated by graphs and the asymptotics of their Hermite–Padé approximants”, Sb. Math., 201:2 (2010), 183–234 | DOI | MR | Zbl
[62] L. Erdős, “Universality of Wigner random matrices: a survey of recent results”, Russian Math. Surveys, 66:3 (2011), 507–626 | DOI
[63] H. Stahl, “Extremal domains associated with an analytic function. I”, Complex Variables Theory Appl., 4:4 (1985), 311–324 | DOI | MR | Zbl
[64] H. Stahl, “Extremal domains associated with an analytic function. II”, Complex Variables Theory Appl., 4:4 (1985), 325–338 | DOI | MR | Zbl
[65] H. Stahl, “Structure of extremal domains associated with an analytic function”, Complex Variables Theory Appl., 4:4 (1985), 339–354 | DOI | MR | Zbl
[66] H. Stahl, “Orthogonal polynomials with complex valued weight function. I”, Constr. Approx., 2:3 (1986), 225–240 | DOI | MR | Zbl
[67] H. Stahl, “Orthogonal polynomials with complex valued weight function. II”, Constr. Approx., 2:3 (1986), 241–251 | DOI | MR | Zbl
[68] Ch. Pommerenke, “Padé approximants and convergence in capacity”, J. Math. Anal. Appl., 41:3 (1973), 775–780 | DOI | MR | Zbl
[69] H. Stahl, “Three different approaches to convergence problem of diagonal Padé approximants”, Rational approximation and applications in mathematics and physics (Łańcut, 1985), Lecture Notes in Math., 1237, Springer, Berlin, 1987, 79–124 | DOI | MR | Zbl
[70] H. Stahl, “The convergence of Padé approximants to functions with branch points”, J. Approx. Theory, 91:2 (1997), 139–204 | DOI | MR | Zbl
[71] A. A. Gonchar, “Rational approximations of analytic functions”, Nine papers from the International Congress of Mathematicians 1986, Amer. Math. Soc. Transl. Ser. 2, 147, Amer. Math. Soc., Providence, RI, 1990, 25–34 | MR | MR | Zbl
[72] R. S. Varga, Functional analysis and approximation theory in numerical analysis, CBMS-NSF Regional Conf. Ser. Appl. Math., 3, Society for Industrial and Applied Mathematics, Philadelphia, PA, 1971, v+76 pp. | MR | MR | Zbl | Zbl
[73] M. J. Cody, G. Meinardus, R. S. Varga, “Chebyshev rational approximation to $e^{-x}$ on $[0,+\infty)$ and applications to heat-conduction problems”, J. Appr. Theory, 2:1 (1969), 50–65 | DOI | MR | Zbl
[74] E. B. Saff, R. S. Varga, “Some open questions concerning polynomial and rational functions”, Padé and rational approximation, Internat. Sympos. (University of South Florida, Tampa, FL, 1976), Academic Press, New York, 1977, 483–488 | MR
[75] A. J. Carpenter, A. Ruttan, R. S. Varga, “Extended computations on the ‘1/9’ conjecture in rational approximation theory”, Rational approximation and interpolation (Tampa, FL, 1983), Lecture Notes in Math., 1105, 1984, 383–411 | DOI | MR | Zbl
[76] R. S. Varga, “Scientific computation on some mathematical conjectures”, Approximation theory (College Station, TX, 1986), v. V, eds. C. K. Chui, L. L. Schumaker, J. D. Ward, Academic Press, Boston, MA, 1986, 191–209 | MR | Zbl
[77] G. H. Halphen, Traité des fonctions elliptiques et de leurs applications. Première partie. Théorie des fonctions elliptiques et de leurs développements en séries, Gauthier-Villars, Paris, 1886, viii+492 pp. | Zbl
[78] A. Martínez-Finkelshtein, “Trajectories of quadratic differentials and approximations of exponents on the semiaxis”, Complex methods in approximation theory (Almería, 1995), Monogr. Cienc. Tecnol., 2, Univ. Almeria, Almeria, 1997, 69–84 | MR | Zbl
[79] A. Martínez-Finkelshtein, R. Orive, “Riemann–Hilbert analysis of Jacobi polynomials orthogonal on a single contour”, J. Approx. Theory, 134:2 (2005), 137–170 | DOI | MR | Zbl
[80] S. Kamvissis, E. A. Rakhmanov, “Existence and regularity for an energy maximization problem in two dimensions”, J. Math. Phys., 46:8 (2005), 083505, 24 pp. | DOI | MR | Zbl
[81] A. Deano, D. Huybrechs, A. B. J. Kuijlaars, “Asymptotic zero distribution of complex orthogonal polynomials associated with Gaussian quadrature”, J. Approx. Theory, 162:12 (2010), 2202–2224 ; arXiv: 1001.2219 | DOI | MR | Zbl
[82] A. Aptekarev, R. Khabibullin, “Asymptotic expansions for polynomials orthogonal with respect to a complex non-constant weight function”, Trans. Moscow Math. Soc., 2007 (2007), 1–37 | MR | Zbl
[83] A. I. Aptekarev, “Sharp constants for rational approximations of analytic functions”, Sb. Math., 193:1 (2002), 1–72 | DOI | MR | Zbl
[84] A. P. Magnus, “On the use of Carathéodory–Fejer method for investigating ‘1/9’ and similar constants”, Nonlinear numerical methods and rational approximation (Wilrijk, 1987), Math. Appl., 43, ed. A. Cuyt, Reidel, Dordrecht, 1988, 105–132 | MR | Zbl
[85] A. P. Magnus, CFGT determination of Varga's constant {‘1/9’}, Preprint B-1348, Institut Mathématique, Université Catholique de Louvain, Belgium, 1986
[86] A. P. Magnus, “Asymptotics and super asymptotics for best rational approximation error norms to the exponential function (the ‘1/9’ problem) by the Carathéodory–Fejér method”, Nonlinear numerical methods and rational approximation, II (Wilrijk, 1993), Math. Appl., 296, eds. A. Cuyt, Kluwer Acad. Publ., Dordrecht, 1994, 173–185 | MR | Zbl
[87] A. P. Magnus, L. Meinguet, “The elliptic functions and integrals of the ‘1/9’ problem”, Computational methods from rational approximation theory (Wilrijk, 1999), Numer. Algorithms, 24, no. 1-2, 2000, 117–139 | DOI | MR | Zbl
[88] G. A. Baker, Jr., “The existence and convergence of subsequences of Padé approximants”, J. Math. Anal. Appl., 43:2 (1973), 498–528 | DOI | MR | Zbl
[89] G. A. Baker, Jr., Essentials of Padé approximants, Academic Press, New York–San Francisco–London, 1975, xi+306 pp. | MR | Zbl
[90] V. I. Buslaev, A. A. Gonchar, S. P. Suetin, “On convergence of subsequences of the $m$th row of a Padé table”, Math. USSR-Sb., 48:2 (1984), 535–540 | DOI | MR | Zbl | Zbl
[91] V. I. Buslaev, “On the poles of the $m$th row of the Padé table”, Math. USSR-Sb., 45:4 (1983), 423–429 | DOI | MR | Zbl | Zbl
[92] E. Fabry, “Sur les points singuliers d'une fonction donnée par son développement en série et l'impossibilité du prolongement analytique dans des cas très généraux”, Ann. Sci. École Norm. Sup. (3), 13 (1896), 367–399 ; http://www.numdam.org/item?id=ASENS_1896_3_13__367_0 | MR | Zbl
[93] L. Bieberbach, Analytische Fortsetzung, Springer-Verlag, Berlin–Göttingen–Heidelberg, 1955, ii+168 pp. | MR | MR | Zbl | Zbl
[94] S. P. Suetin, “On poles of the $m$th row of a Padé table”, Math. USSR-Sb., 48:2 (1984), 493–497 | DOI | MR | Zbl | Zbl
[95] S. P. Suetin, “On an inverse problem for the $m$th row of the Padé table”, Math. USSR-Sb., 52:1 (1985), 231–244 | DOI | MR | Zbl | Zbl
[96] A. A. Gonchar, S. P. Suetin, “On Padé approximants of Markov-type meromorphic functions”, Proc. Steklov Inst. Math., 272, suppl. 2 (2011), 58–95 | DOI | MR | Zbl
[97] S. P. Suetin, “Strong asymptotics of polynomials orthogonal with respect to a complex weight”, Sb. Math., 200:1 (2009), 77–93 | DOI | MR | Zbl
[98] S. P. Suetin, “Uniform convergence of Padé diagonal approximants for hyperelliptic functions”, Sb. Math., 191:9 (2000), 1339–1373 | DOI | MR | Zbl
[99] S. P. Suetin, “Approximation properties of the poles of diagonal Padé approximants for certain generalizations of Markov functions”, Sb. Math., 193:12 (2002), 1837–1866 | DOI | MR | Zbl
[100] F. Peherstorfer, “Zeros of polynomials orthogonal on several intervals”, Int. Math. Res. Not., 2003, no. 7, 361–385 | DOI | MR | Zbl
[101] S. Dumas, Sur le développement des fonctions elliptiques en fractions continues, Thèse, Zürich, 1908, 59 pp. | Zbl
[102] S. P. Suetin, “Convergence of Chebyshëv continued fractions for elliptic functions”, Sb. Math., 194:12 (2003), 1807–1835 | DOI | MR | Zbl
[103] G. Springer, Introduction to Riemann surfaces, Addison-Wesley, Reading, MA, 1957, viii+307 pp. | MR | MR | Zbl | Zbl
[104] H. Stahl, “Convergence of rational interpolants”, Bull. Belg. Math. Soc. Simon Stevin, 1996, suppl. issue – Numerical analysis. Papers from the Conference on Special Topics in Numerical Analysis and Applied Mathematics in honor of Jean Meinguet (Louvain-la-Neuve, 1995), 11–32 | MR | Zbl
[105] V. I. Buslaev, “Simple counterexample to the Baker–Gammel–Wills conjecture”, East J. Approx., 7:4 (2001), 515–517 | MR | Zbl
[106] V. I. Buslaev, “On the Baker–Gammel–Wills conjecture in the theory of Padé approximants”, Sb. Math., 193:6 (2002), 811–823 | DOI | MR | Zbl
[107] D. S. Lubinsky, “Rogers–Ramanujan and the Baker–Gammel–Wills (Padé) conjecture”, Ann. of Math. (2), 157:3 (2003), 847–889 | DOI | MR | Zbl
[108] S. P. Suetin, “On interpolation properties of diagonal Padé approximants of elliptic functions”, Russian Math. Surveys, 59:4 (2004), 800–802 | DOI | MR | Zbl
[109] B. Beckermann, V. Kaliaguine, “The diagonal of the Padé table and the approximation of the Weyl function of second-order difference operators”, Constr. Approx., 13:4 (1997), 481–510 | DOI | MR | Zbl
[110] D. V. Khristoforov, “On uniform approximation of elliptic functions by Padé approximants”, Sb. Math., 200:6 (2009), 923–941 | DOI | MR | Zbl
[111] G. V. Chudnovsky, “On the method of Thue–Siegel”, Ann. of Math. (2), 117:2 (1983), 325–382 | DOI | MR | Zbl
[112] G. V. Chudnovsky, “The Thue–Siegel–Roth theorem for values of algebraic functions”, Proc. Japan Acad. Ser. A Math. Sci., 59:6 (1983), 281–284 | DOI | MR | Zbl
[113] C. M. Andersen, J. F. Geer, “Power series expansions for the frequency and period of the limit cycle of the van der Pol equation”, SIAM J. Appl. Math., 42:3 (1982), 678–693 | DOI | MR | Zbl
[114] M. B. Dadfar, J. Geer, C. M. Andersen, “Perturbation analysis of the limit cycle of the free van der Pol equation”, SIAM J. Appl. Math., 44:5 (1984), 881–895 | DOI | MR | Zbl
[115] S. P. Suetin, “Chislennyi analiz nekotorykh kharakteristik predelnogo tsikla svobodnogo uravneniya Van der Polya”, Sovr. probl. matem., 14, MIAN, M., 2010, 3–57
[116] V. N. Sorokin, “Hermite–Padé approximations for Nikishin systems and the irrationality of $\zeta(3)$”, Russian Math. Surveys, 49:2 (1994), 176–177 | DOI | MR | Zbl
[117] G. L. Litvinov, “Error autocorrection in rational approximation and interval estimates. A survey of results”, Cent. Eur. J. Math., 1:1 (2003), 36–60 | DOI | MR | Zbl
[118] S. B. Gashkov, I. B. Gashkov, “Berlekamp–Massey algorithm, continued fractions, Padé approximations, and orthogonal polynomials”, Math. Notes, 79:1 (2006), 41–54 | DOI | MR | Zbl
[119] V. Yu. Novokshenov, “Padé approximations for Painlevé I and II transcendents”, Theoret. Math. Phys., 159:3 (2009), 853–862 | DOI | MR | Zbl
[120] A. I. Aptekarev, E. M. Nikishin, “The scattering problem for a discrete Sturm–Liouville operator”, Math. USSR-Sb., 49:2 (1984), 325–355 | DOI | MR | Zbl | Zbl
[121] A. I. Aptekarev, “Asymptotic properties of polynomials orthogonal on a system of contours, and periodic motions of Toda lattices”, Math. USSR-Sb., 53:1 (1986), 233–260 | DOI | MR | Zbl
[122] A. I. Aptekarev, “Strong asymptotics of multiply orthogonal polynomials for Nikishin systems”, Sb. Math., 190:5 (1999), 631–669 | DOI | MR | Zbl
[123] V. A. Kalyagin, “On a class of polynomials defined by two orthogonality relations”, Math. USSR-Sb., 38:4 (1981), 563–580 | DOI | MR | Zbl
[124] V. A. Kalyagin, “Hermite–Padé approximants and spectral analysis of nonsymmetric operators”, Russian Acad. Sci. Sb. Math., 82:1 (1995), 199–216 | DOI | MR | Zbl
[125] V. A. Kalyagin, A. A. Kononova, “On compact perturbations of the limit-periodic Jacobi operator”, Math. Notes, 86:6 (2009), 789–800 | DOI | MR | Zbl
[126] D. N. Tulyakov, “Difference equations having bases with powerlike growth which are perturbed by a spectral parameter”, Sb. Math., 200:5 (2009), 753–781 | DOI | MR | Zbl
[127] A. Martínez-Finkelshtein, E. A. Rakhmanov, “On asymptotic behavior of Heine–Stieltjes and Van Vleck polynomials”, Recent trends in orthogonal polynomials and approximation theory, Contemp. Math., 507, Amer. Math. Soc., Providence, RI, 2010, 209–232 | MR | Zbl
[128] A. Martínez-Finkelshtein, E. A. Rakhmanov, “Critical measures, quadratic differentials, and weak limits of zeros of Stieltjes polynomials”, Comm. Math. Phys., 302:1 (2011), 53–111 ; arXiv: 0902.0193 | DOI | MR | Zbl
[129] A. Martínez-Finkelshtein, E. A. Rakhmanov, S. P. Suetin, “Variation of the equilibrium measure and the $S$-property of a stationary compact set”, Russian Math. Surveys, 66:1 (2011), 176–178 | DOI | Zbl
[130] A. Martines-Finkelshtein, E. A. Rakhmanov, S. P. Suetin, “Variatsiya ravnovesnoi energii i $S$-svoistvo statsionarnykh kompaktov”, Matem. sb., 202:12 (2011), 113–136
[131] L. Pastur, “From random matrices to quasi-periodic Jacobi matrices via orthogonal polynomials”, J. Approx. Theory, 139:1-2 (2006), 269–292 | DOI | MR | Zbl
[132] A. A. Gonchar, “Some recent convergence results on diagonal Padé approximants”, Approximation theory, Proceedings of the Fifth International Symposium (College Station, TX, 1986), v. V, Academic Press, Boston, MA, 1986, 55–70 | MR | Zbl
[133] A. A. Gonchar, E. A. Rakhmanov, S. P. Suetin, “On the convergence of Padé approximation of orthogonal expansions”, Proc. Steklov Inst. Math., 200 (1993), 149–159 | MR | Zbl
[134] A. A. Gonchar, E. A. Rakhmanov, S. P. Suetin, “On the rate of convergence of Padé approximants of orthogonal expansions”, Progress in approximation theory (Tampa, FL, 1990), Springer Ser. Comput. Math., 19, Springer, New York, 1992, 169–190 | MR | Zbl
[135] A. A. Gonchar, E. B. Saff (eds.), Progress in approximation theory, An international perspective. Proceedings of the International Conference on Approximation Theory held at the University of South Florida (Tampa, FL, March 19–22, 1990), Springer Ser. Comput. Math., 19, Springer, New York, 1992, xviii+451 pp. | MR | Zbl
[136] A. A. Gonchar, E. A. Rakhmanov, S. P. Suetin, Skhodimost nelineinykh approksimatsii Pade–Chebyshëva dlya mnogoznachnykh analiticheskikh funktsii, variatsiya ravnovesnoi energii i $S$-svoistvo statsionarnykh kompaktov, 2010, 49 pp., arXiv: 1012.0170
[137] A. A. Gonchar, E. A. Rakhmanov, V. N. Sorokin, “Hermite–Padé approximants for systems of Markov-type functions”, Sb. Math., 188:5 (1997), 671–696 | DOI | MR | Zbl
[138] S. P. Suetin, “On the existence of nonlinear Padé–Chebyshev approximations for analytic functions”, Math. Notes, 86:2 (2009), 264–275 | DOI | MR | Zbl
[139] Yu. A. Labych, A. P. Starovoitov, “Trigonometric Padé approximants for functions with regularly decreasing Fourier coefficients”, Sb. Math., 200:7 (2009), 1051–1074 | DOI | MR | Zbl
[140] N. U. Arakelyan, “On efficient analytic continuation of power series”, Math. USSR-Sb., 52:1 (1985), 21–39 | DOI | MR | Zbl | Zbl
[141] G. López Lagomasino, “Conditions for convergence of multipoint Padé approximants for functions of Stieltjes type”, Math. USSR-Sb., 35:3 (1979), 363–376 | DOI | MR | Zbl
[142] G. L. Lopes, “On the convergence of the Padé approximants for meromorphic functions of Stieltjes type”, Math. USSR-Sb., 39:2 (1981), 281–288 | DOI | MR | Zbl
[143] G. L. Lopes, “On the asymptotics of the ratio of orthogonal polynomials and convergence of multipoint Padé approximants”, Math. USSR-Sb., 56:1 (1987), 207–219 | DOI | MR | Zbl
[144] G. L. Lopes, “Convergence of Padé approximants of Stieltjes type meromorphic functions and comparative asymptotics for orthogonal polynomials”, Math. USSR-Sb., 64:1 (1989), 207–227 | DOI | MR | Zbl
[145] G. L. Lopes, “Relative asymptotics for polynomials orthogonal on the real axis”, Math. USSR-Sb., 65:2 (1990), 505–529 | DOI | MR | Zbl
[146] E. A. Rahmanov, “On the asymptotics of the ratio of orthogonal polynomials”, Math. USSR-Sb., 32:2 (1977), 199–213 | DOI | MR | Zbl
[147] E. A. Rakhmanov, “On the asymptotics of the ratio of orthogonal polynomials. II”, Math. USSR-Sb., 46:1 (1983), 105–117 | DOI | MR | Zbl | Zbl
[148] H. Widom, “Extremal polynomials associated with a system of curves in the complex plane”, Adv. Math., 3:2 (1969), 127–232 | DOI | MR | Zbl
[149] J. Nuttall, “Padé polynomial asymptotics from a singular integral equation”, Constr. Approx., 6:2 (1990), 157–166 | DOI | MR | Zbl
[150] E. I. Zverovich, “Boundary value problems in the theory of analytic functions in Hölder classes on Riemann surfaces”, Russian Math. Surveys, 26:1 (1971), 117–192 | DOI | MR | Zbl
[151] B. A. Dubrovin, “Theta functions and non-linear equations”, Russian Math. Surveys, 36:2 (1981), 11–92 | DOI | MR | Zbl | Zbl
[152] S. P. Suetin, “Padé approximants and efficient analytic continuation of a power series”, Russian Math. Surveys, 57:1 (2002), 43–141 | DOI | MR | Zbl
[153] S. P. Suetin, “Comparative asymptotics of solutions and trace formulas for a class of difference equations”, Proc. Steklov Inst. Math., 272, suppl. 2 (2011), 96–137 | DOI | MR | Zbl
[154] S. P. Suetin, “Trace formulae for a class of Jacobi operators”, Sb. Math., 198:6 (2007), 857–885 | DOI | MR | Zbl
[155] N. I. Akhiezer, “Orthogonal polynomials on several intervals”, Soviet Math. Dokl., 1 (1960), 989–992 | MR | Zbl
[156] N. I. Akhiezer, Yu. Ya. Tomchuk, “On the theory of orthogonal polynomials over several intervals”, Soviet Math. Dokl., 2 (1961), 687–690 | MR | Zbl
[157] S. P. Suetin, “Asymptotics of Akhiezer polynomials and uniform convergence of Padé approximants for hyperelliptic functions”, Russian Math. Surveys, 53:6 (1998), 1377–1379 | DOI | MR | Zbl
[158] N. I. Akhiezer, “A continuous analogue of orthogonal polynomials on a system of intervals”, Soviet Math. Dokl., 2 (1961), 1409–1412 | MR | Zbl
[159] G. V. Kuz'mina, “Moduli of families of curves and quadratic differentials”, Proc. Steklov Inst. Math., 139 (1982), 1–231 | MR | Zbl | Zbl
[160] G. M. Goluzin, Geometric theory of functions of a complex variable, Transl. Math. Monogr., 26, Amer. Math. Soc., Providence, RI, 1969, vi+676 pp. | MR | MR | Zbl | Zbl
[161] V. N. Dubinin, “Symmetrization in the geometric theory of functions of a complex variable”, Russian Math. Surveys, 49:1 (1994), 1–79 | DOI | MR | Zbl
[162] V. N. Dubinin, Emkosti kondensatorov i simmetrizatsiya v geometricheskoi teorii funktsii kompleksnogo peremennogo, Dalnauka, Vladivostok, 2009, 390 pp.
[163] E. A. Perevoznikova, E. A. Rakhmanov, Variatsiya ravnovesnoi energii i $S$-svoistvo kompaktov minimalnoi emkosti, Preprint, M., 1994
[164] M. A. Lapik, “Support of the extremal measure in a vector equilibrium problem”, Sb. Math., 197:8 (2006), 1205–1221 | DOI | MR | Zbl
[165] N. S. Landkof, Foundations of modern potential theory, Grundlehren Math. Wiss., 180, Springer-Verlag, Berlin–Heidelberg–New York, 1972, 424 pp. | MR | MR | Zbl | Zbl
[166] V. S. Buyarov, E. A. Rakhmanov, “Families of equilibrium measures in an external field on the real axis”, Sb. Math., 190:6 (1999), 791–802 | DOI | MR | Zbl
[167] A. Edrei, “The Padé tables of entire functions”, J. Appr. Theory, 28:1 (1980), 54–82 | DOI | MR | Zbl
[168] H. Wallin, “The convergence of Padé approximants and the size of the power series coefficients”, Applicable Anal., 4:3 (1974), 235–251 | DOI | MR | Zbl
[169] G. A. Baker, Jr., J. L. Gammel, J. G. Wills, “An investigation of the applicability of the Padé approximant method”, J. Math. Anal. Appl., 2:3 (1961), 405–418 | DOI | MR | Zbl
[170] V. I. Buslaev, “Relations for the coefficients, and singular points of a function”, Math. USSR-Sb., 59:2 (1988), 349–377 | DOI | MR | Zbl | Zbl
[171] V. I. Buslaev, “An analogue of Fabry's theorem for generalized Padé approximants”, Sb. Math., 200:7 (2009), 981–1050 | DOI | MR | Zbl
[172] S. Uchiyama, “Rational approximations to algebraic functions”, J. Fac. Sci. Hokkaido Univ. Ser. I, 15 (1961), 173–192 | MR | Zbl
[173] H. Stahl, “A note on three conjectures by Gonchar on rational approximation”, J. Approx. Theory, 50:1 (1987), 3–7 | DOI | MR | Zbl
[174] H. Stahl, “Conjectures around the Baker–Gammel–Wills conjecture”, Constr. Approx., 13:2 (1997), 287–292 | DOI | MR | Zbl
[175] G. Pólya, “Untersuchungen über Lücken und Singularitäten von Potenzreihen”, Math. Z., 29:1 (1929), 549–640 | DOI | MR | Zbl
[176] J. L. Walsh, Interpolation and approximation by rational functions in the complex domain, Amer. Math. Soc. Colloq. Publ., XX, Amer. Math. Soc., Providence, RI, 1960, x+398 pp. | MR | MR | Zbl | Zbl
[177] O. G. Parfenov, “Estimates of the singular numbers of the Carleson imbedding operator”, Math. USSR-Sb., 59:2 (1988), 497–514 | DOI | MR | Zbl
[178] V. A. Prokhorov, “On a theorem of Adamian, Arov, and Krein”, Russian Acad. Sci. Sb. Math., 78:1 (1994), 77–90 | DOI | MR | Zbl
[179] V. A. Prokhorov, “Rational approximation of analytic functions”, Russian Acad. Sci. Sb. Math., 78:1 (1994), 139–164 | DOI | MR | Zbl
[180] V. A. Prokhorov, “On the degree of rational approximation of meromorphic functions”, Russian Acad. Sci. Sb. Math., 81:1 (1995), 1–20 | DOI | MR | Zbl
[181] H. Stahl, “Diagonal Padé approximants to hyperelliptic functions”, Ann. Fac. Sci. Toulouse Math. (6), 1996, Special Issue, 121–193 | DOI | MR | Zbl
[182] A. A. Gonchar, “Zolotarev problems connected with rational functions”, Math. USSR-Sb., 7:4 (1969), 623–635 | DOI | MR | Zbl | Zbl
[183] H. Poincaré, “Sur les équations linéaires aux différentielles ordinaires et aux différences finies”, Amer. J. Math., 7:3 (1885), 203–258 | DOI | MR | Zbl
[184] O. Perron, “Über einen Satz des Herrn Poincaré”, J. Reine Angew. Math., 136 (1909), 17–37 | DOI | Zbl
[185] O. Perron, “Über die Poincarésche lineare Differenzengleichung”, J. Reine Angew. Math., 137 (1910), 6–64 | DOI | Zbl
[186] M. A. Evgrafov, “Novoe dokazatelstvo teoremy Perrona”, Izv. AN SSSR. Ser. matem., 17:2 (1953), 77–82 | MR | Zbl
[187] A. O. Gel'fond, Calculus of finite differences, Int. Monogr. Advanced Math. Phys., Hindustan Publishing Corp., Delhi, 1971, vi+451 pp. | MR | MR | Zbl | Zbl
[188] G. A. Freiman, “O teoremakh Puankare i Perrona”, UMN, 12:3(75) (1957), 241–246 | MR | Zbl
[189] V. I. Buslaev, “Poincaré's theorem and its applications to the convergence of continued fractions”, Sb. Math., 189:12 (1998), 1749–1764 | DOI | MR | Zbl
[190] E. B. Van Vleck, “On the convergence of algebraic continued fractions whose coefficients have limiting values”, Trans. Amer. Math. Soc., 5:3 (1904), 253–262 | MR | Zbl
[191] V. I. Buslaev, “On the Van Vleck theorem for regular $C$-fractions with limit-periodic coefficients”, Izv. Math., 65:4 (2001), 673–686 | DOI | MR | Zbl
[192] V. I. Buslaev, “On the convergence of continued T-fractions”, Proc. Steklov Inst. Math., 235 (2001), 29–43 | MR | Zbl
[193] G. Pólya, “Über gewisse notwendige Determinantkriterien für die Forsetzbarkeit einer Potenzreihe”, Math. Ann., 99:1 (1928), 687–706 | DOI | MR | Zbl
[194] V. I. Buslaev, “Otsenka emkosti mnozhestva osobennostei funktsii, zadannykh svoim razlozheniem v nepreryvnuyu drob”, Anal. Math., 2012 (to appear)
[195] J. Worpitsky, “Untersuchungen über die Entwickelung der monodromen und monogenen Funktionen durch Kettenbrüche”, Friedrichs-Gymnasium und Realschule Jahresbericht, Berlin, 1865, 3–39
[196] W. T. Scott, H. S. Wall, “Continued fraction expansions for arbitrary power series”, Ann. Math. (2), 41 (1940), 328–349 | DOI | MR | Zbl
[197] A. A. Gonchar, “Singular points of meromorphic functions defined by their expansion in a $C$-fraction”, Sb. Math., 197:10 (2006), 1405–1416 | DOI | MR | Zbl
[198] M. D. Hirschhorn, “Partitions and Ramanujan's continued fraction”, Duke Math. J., 39 (1972), 789–791 | DOI | MR | Zbl
[199] G. H. Hardy, J. E. Littlewood, “Notes on the theory of series. XXIV. A curious power-series”, Proc. Cambridge Philos. Soc., 42 (1946), 85–90 | DOI | MR | Zbl
[200] D. S. Lubinsky, “Note on polynomial approximation of monomials and Diophantine approximation”, J. Approx. Theory, 43:1 (1985), 29–35 | DOI | MR | Zbl
[201] G. Petruska, “On the radius of convergence of $q$-series”, Indag. Math. (N.S.), 3:3 (1992), 353–364 | DOI | MR | Zbl
[202] V. I. Buslaev, “Convergence of the Rogers–Ramanujan continued fraction”, Sb. Math., 194:6 (2003), 833–856 | DOI | MR | Zbl
[203] V. I. Buslaev, “On the Fabry ratio theorem for orthogonal series”, Proc. Steklov Inst. Math., 253 (2006), 8–21 | DOI | MR
[204] S. P. Suetin, “Inverse theorems on generalized Padé approximants”, Math. USSR-Sb., 37:4 (1980), 581–597 | DOI | MR | Zbl | Zbl