The Erd\H os--Hajnal problem of hypergraph colouring, its generalizations, and related problems
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 66 (2011) no. 5, pp. 933-1002
Voir la notice de l'article provenant de la source Math-Net.Ru
Extremal problems concerned with hypergraph colouring first arose in connection with classical investigations in the 1920-30s which gave rise to Ramsey theory. Since then, this area has assumed a central position in extremal combinatorics. This survey is devoted to one well-known problem of hypergraph colouring, the Erdős–Hajnal problem, initially posed in 1961. It opened a line of research in hypergraph theory whose methods and results are widely used in various domains of discrete mathematics.
Bibliography: 109 titles.
Keywords:
hypergraph, hypergraph colourings, chromatic numbers, extremal set theory.
@article{RM_2011_66_5_a2,
author = {A. M. Raigorodskii and D. A. Shabanov},
title = {The {Erd\H} {os--Hajnal} problem of hypergraph colouring, its generalizations, and related problems},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {933--1002},
publisher = {mathdoc},
volume = {66},
number = {5},
year = {2011},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2011_66_5_a2/}
}
TY - JOUR AU - A. M. Raigorodskii AU - D. A. Shabanov TI - The Erd\H os--Hajnal problem of hypergraph colouring, its generalizations, and related problems JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2011 SP - 933 EP - 1002 VL - 66 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RM_2011_66_5_a2/ LA - en ID - RM_2011_66_5_a2 ER -
%0 Journal Article %A A. M. Raigorodskii %A D. A. Shabanov %T The Erd\H os--Hajnal problem of hypergraph colouring, its generalizations, and related problems %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2011 %P 933-1002 %V 66 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/RM_2011_66_5_a2/ %G en %F RM_2011_66_5_a2
A. M. Raigorodskii; D. A. Shabanov. The Erd\H os--Hajnal problem of hypergraph colouring, its generalizations, and related problems. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 66 (2011) no. 5, pp. 933-1002. http://geodesic.mathdoc.fr/item/RM_2011_66_5_a2/