@article{RM_2011_66_5_a1,
author = {Y. \^Onishi},
title = {Generalized {Bernoulli{\textendash}Hurwitz} numbers and the universal {Bernoulli} numbers},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {871--932},
year = {2011},
volume = {66},
number = {5},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2011_66_5_a1/}
}
Y. Ônishi. Generalized Bernoulli–Hurwitz numbers and the universal Bernoulli numbers. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 66 (2011) no. 5, pp. 871-932. http://geodesic.mathdoc.fr/item/RM_2011_66_5_a1/
[1] T. Clausen, “Theorem”, Astronomische Nachrichten, 17:22 (1840), 351–352 | DOI
[2] K. G. C. von Staudt, “Beweis eines Lehrsatzes, die Bernoullischen Zahlen betreffend”, J. Reine Angew. Math., 21 (1840), 372–374 | DOI
[3] K. G. C. von Staudt, De Numeris Bernoullianis, commentatio altera, Erlangen, 1845
[4] E. E. Kummer, “Über eine allgemeine Eigenschaft der rationalen Entwicklungscoëfficienten einer bestimmten Gattung analytischer Functionen”, J. Reine Angew. Math., 41 (1851), 368–372 | DOI | Zbl
[5] A. Hurwitz, “Ueber die Entwicklungskoeffizienten der lemniskatishen Funktionen”, Nachr. Acad. Wiss. Göttingen, 1897, 273–276 ; Mathematische Werke, II, Birkhäuser, Basel, 1963, 338–341 | Zbl
[6] A. Hurwitz, “Ueber die Entwicklungskoeffizienten der lemniskatishen Funktionen”, Math. Ann., 51 (1899), 196–226 ; Mathematische Werke, II, Birkhäuser, Basel, 1963, 342–373 | DOI | Zbl
[7] H. Lang, “Kummersche Kongruenzen für die normierten Entwicklungskoeffizienten der Weierstrasschen $\wp$-Funktionen”, Abh. Math. Sem. Univ. Hamburg, 33 (1969), 183–196 | DOI | MR | Zbl
[8] L. Carlitz, “Congruences for the coefficients of hyperelliptic and related functions”, Duke Math. J., 19 (1952), 329–337 | DOI | MR | Zbl
[9] N. M. Katz, “Formal groups and $p$-adic interpolation”, Journées Arithmétiques de Caen (Univ. Caen, Caen, 1976), Astérisque, 41–42, Soc. Math. France, Paris, 1977, 55–65 | MR | Zbl
[10] K. H. Rosen, W. M. Snyder, “A Kummer congruence for the Hurwitz–Herglotz function”, Tokyo J. Math., 6 (1983), 125–133 | DOI | MR | Zbl
[11] C. Snyder, “A concept of Bernoulli numbers in algebraic function fields”, J. Reine Angew. Math., 307/308 (1979), 295–308 | DOI | MR | Zbl
[12] C. Snyder, “The coefficients of the Hessian elliptic functions”, J. Reine Angew. Math., 306 (1979), 60–87 | DOI | MR | Zbl
[13] C. Snyder, “A concept of Bernoulli numbers in algebraic function fields. II”, Manuscripta Math., 35:1-2 (1981), 69–89 | DOI | MR | Zbl
[14] C. Snyder, “Kummer congruences for the coefficients of Hurwitz series”, Acta Arith., 40:2 (1981/82), 175–191 | MR | Zbl
[15] C. Snyder, “Kummer congruences in formal groups and algebraic groups of dimension one”, Rocky Mountain J. Math., 15:1 (1985), 1–11 | DOI | MR | Zbl
[16] C. Snyder, “$p$-adic interpolation of the coefficients of Hurwitz series attached to height one formal groups”, Rocky Mountain J. Math., 23:1 (1993), 339–351 | DOI | MR | Zbl
[17] H. S. Vandiver, “Certain congruence involving the Bernoulli numbers”, Duke Math. J., 5 (1939), 548–551 | DOI | MR | Zbl
[18] L. Carlitz, “The coefficients of the reciprocal of a series”, Duke Math. J., 8 (1941), 689–700 | DOI | MR | Zbl
[19] M. Hazewinkel, Formal groups and applications, Pure Appl. Math., 78, Academic Press, New York–London, 1978, xxii+573 pp. | MR | Zbl
[20] E. T. Whittaker, G. N. Watson, A course of modern analysis, Cambridge Univ. Press, Cambridge, 1927, vi+608 pp. | MR | Zbl | Zbl
[21] T. Arakawa, T. Ibukiyama, M. Kaneko, Bernoulli numbers and zeta functions, Makino Shoten Ltd., Tokyo, 2001 (in Japanese)
[22] Y. Ônishi, Theory of the generalized Bernoulli–Hurwitz numbers for the algebraic functions of cyclotomic type and the universal Bernoulli numbers, arXiv: [math.NT] math/0406096
[23] L. Comtet, Advanced combinatorics. The art of finite and infinite expansions, Reidel, Dordrecht, 1974, xi+343 pp. | MR | Zbl
[24] F. Clarke, “The universal von Staudt theorem”, Trans. Amer. Math. Soc., 315:2 (1989), 591–603 | DOI | MR | Zbl
[25] A. Adelberg, “Universal higher order Bernoulli numbers and Kummer and related congruences”, J. Number Theory, 84:1 (2000), 119–135 | DOI | MR | Zbl
[26] A. Adelberg, “Kummer congruences for universal Bernoulli numbers and related congruences for poly-Bernoulli numbers”, Int. Math. J., 1:1 (2002), 53–63 | DOI | MR | Zbl
[27] A. Adelberg, “Universal Kummer congruences mod prime powers”, J. Number Theory, 109:2 (2004), 362–378 | DOI | MR | Zbl
[28] T. Honda, “On the theory of commutative formal groups”, J. Math. Soc. Japan, 22 (1970), 213–246 | DOI | MR | Zbl
[29] A. M. Robert, A course in $p$-adic analysis, Grad. Texts in Math., 198, Springer-Verlag, New York, 2000, xvi+437 pp. | MR | Zbl
[30] N. Yui, “On the Jacobian varieties of hyperelliptic curves over fields of characteristic $p>2$”, J. Algebra, 52:2 (1978), 378–410 | DOI | MR | Zbl
[31] N. M. Katz, “The congruence of Clausen–von Staudt and Kummer for Bernoulli–Hurwitz numbers”, Math. Ann., 216 (1975), 1–4 | DOI | MR | Zbl
[32] Y. Morita, “A $p$-adic analogue of the $\varGamma$-function”, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 22:2 (1975), 255–266 | MR | Zbl
[33] H. Matsumura, Commutative ring theory, Cambridge Stud. Adv. Math., 8, Cambridge Univ. Press, Cambridge, 1986, xiv+320 pp. | MR | Zbl
[34] T. Ibukiyama, “Memoirs on ‘easy’ zeta functions”, Proceedings of the 9th summer school on “Zeta functions”, 2001, 235–248