Generalized Bernoulli–Hurwitz numbers and the universal Bernoulli numbers
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 66 (2011) no. 5, pp. 871-932 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The three fundamental properties of the Bernoulli numbers, namely, the von Staudt–Clausen theorem, von Staudt's second theorem, and Kummer's original congruence, are generalized to new numbers that we call generalized Bernoulli–Hurwitz numbers. These are coefficients in the power series expansion of a higher-genus algebraic function with respect to a suitable variable. Our generalization differs strongly from previous works. Indeed, the order of the power of the modulus prime in our Kummer-type congruences is exactly the same as in the trigonometric function case (namely, Kummer's own congruence for the original Bernoulli numbers), and as in the elliptic function case (namely, H. Lang's extension for the Hurwitz numbers). However, in other past results on higher-genus algebraic functions, the modulus was at most half of its value in these classical cases. This contrast is clarified by investigating the analogue of the three properties above for the universal Bernoulli numbers. Bibliography: 34 titles.
Keywords: Bernoulli numbers, Abelian functions, formal groups.
@article{RM_2011_66_5_a1,
     author = {Y. \^Onishi},
     title = {Generalized {Bernoulli{\textendash}Hurwitz} numbers and the universal {Bernoulli} numbers},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {871--932},
     year = {2011},
     volume = {66},
     number = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2011_66_5_a1/}
}
TY  - JOUR
AU  - Y. Ônishi
TI  - Generalized Bernoulli–Hurwitz numbers and the universal Bernoulli numbers
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2011
SP  - 871
EP  - 932
VL  - 66
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/RM_2011_66_5_a1/
LA  - en
ID  - RM_2011_66_5_a1
ER  - 
%0 Journal Article
%A Y. Ônishi
%T Generalized Bernoulli–Hurwitz numbers and the universal Bernoulli numbers
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2011
%P 871-932
%V 66
%N 5
%U http://geodesic.mathdoc.fr/item/RM_2011_66_5_a1/
%G en
%F RM_2011_66_5_a1
Y. Ônishi. Generalized Bernoulli–Hurwitz numbers and the universal Bernoulli numbers. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 66 (2011) no. 5, pp. 871-932. http://geodesic.mathdoc.fr/item/RM_2011_66_5_a1/

[1] T. Clausen, “Theorem”, Astronomische Nachrichten, 17:22 (1840), 351–352 | DOI

[2] K. G. C. von Staudt, “Beweis eines Lehrsatzes, die Bernoullischen Zahlen betreffend”, J. Reine Angew. Math., 21 (1840), 372–374 | DOI

[3] K. G. C. von Staudt, De Numeris Bernoullianis, commentatio altera, Erlangen, 1845

[4] E. E. Kummer, “Über eine allgemeine Eigenschaft der rationalen Entwicklungscoëfficienten einer bestimmten Gattung analytischer Functionen”, J. Reine Angew. Math., 41 (1851), 368–372 | DOI | Zbl

[5] A. Hurwitz, “Ueber die Entwicklungskoeffizienten der lemniskatishen Funktionen”, Nachr. Acad. Wiss. Göttingen, 1897, 273–276 ; Mathematische Werke, II, Birkhäuser, Basel, 1963, 338–341 | Zbl

[6] A. Hurwitz, “Ueber die Entwicklungskoeffizienten der lemniskatishen Funktionen”, Math. Ann., 51 (1899), 196–226 ; Mathematische Werke, II, Birkhäuser, Basel, 1963, 342–373 | DOI | Zbl

[7] H. Lang, “Kummersche Kongruenzen für die normierten Entwicklungskoeffizienten der Weierstrasschen $\wp$-Funktionen”, Abh. Math. Sem. Univ. Hamburg, 33 (1969), 183–196 | DOI | MR | Zbl

[8] L. Carlitz, “Congruences for the coefficients of hyperelliptic and related functions”, Duke Math. J., 19 (1952), 329–337 | DOI | MR | Zbl

[9] N. M. Katz, “Formal groups and $p$-adic interpolation”, Journées Arithmétiques de Caen (Univ. Caen, Caen, 1976), Astérisque, 41–42, Soc. Math. France, Paris, 1977, 55–65 | MR | Zbl

[10] K. H. Rosen, W. M. Snyder, “A Kummer congruence for the Hurwitz–Herglotz function”, Tokyo J. Math., 6 (1983), 125–133 | DOI | MR | Zbl

[11] C. Snyder, “A concept of Bernoulli numbers in algebraic function fields”, J. Reine Angew. Math., 307/308 (1979), 295–308 | DOI | MR | Zbl

[12] C. Snyder, “The coefficients of the Hessian elliptic functions”, J. Reine Angew. Math., 306 (1979), 60–87 | DOI | MR | Zbl

[13] C. Snyder, “A concept of Bernoulli numbers in algebraic function fields. II”, Manuscripta Math., 35:1-2 (1981), 69–89 | DOI | MR | Zbl

[14] C. Snyder, “Kummer congruences for the coefficients of Hurwitz series”, Acta Arith., 40:2 (1981/82), 175–191 | MR | Zbl

[15] C. Snyder, “Kummer congruences in formal groups and algebraic groups of dimension one”, Rocky Mountain J. Math., 15:1 (1985), 1–11 | DOI | MR | Zbl

[16] C. Snyder, “$p$-adic interpolation of the coefficients of Hurwitz series attached to height one formal groups”, Rocky Mountain J. Math., 23:1 (1993), 339–351 | DOI | MR | Zbl

[17] H. S. Vandiver, “Certain congruence involving the Bernoulli numbers”, Duke Math. J., 5 (1939), 548–551 | DOI | MR | Zbl

[18] L. Carlitz, “The coefficients of the reciprocal of a series”, Duke Math. J., 8 (1941), 689–700 | DOI | MR | Zbl

[19] M. Hazewinkel, Formal groups and applications, Pure Appl. Math., 78, Academic Press, New York–London, 1978, xxii+573 pp. | MR | Zbl

[20] E. T. Whittaker, G. N. Watson, A course of modern analysis, Cambridge Univ. Press, Cambridge, 1927, vi+608 pp. | MR | Zbl | Zbl

[21] T. Arakawa, T. Ibukiyama, M. Kaneko, Bernoulli numbers and zeta functions, Makino Shoten Ltd., Tokyo, 2001 (in Japanese)

[22] Y. Ônishi, Theory of the generalized Bernoulli–Hurwitz numbers for the algebraic functions of cyclotomic type and the universal Bernoulli numbers, arXiv: [math.NT] math/0406096

[23] L. Comtet, Advanced combinatorics. The art of finite and infinite expansions, Reidel, Dordrecht, 1974, xi+343 pp. | MR | Zbl

[24] F. Clarke, “The universal von Staudt theorem”, Trans. Amer. Math. Soc., 315:2 (1989), 591–603 | DOI | MR | Zbl

[25] A. Adelberg, “Universal higher order Bernoulli numbers and Kummer and related congruences”, J. Number Theory, 84:1 (2000), 119–135 | DOI | MR | Zbl

[26] A. Adelberg, “Kummer congruences for universal Bernoulli numbers and related congruences for poly-Bernoulli numbers”, Int. Math. J., 1:1 (2002), 53–63 | DOI | MR | Zbl

[27] A. Adelberg, “Universal Kummer congruences mod prime powers”, J. Number Theory, 109:2 (2004), 362–378 | DOI | MR | Zbl

[28] T. Honda, “On the theory of commutative formal groups”, J. Math. Soc. Japan, 22 (1970), 213–246 | DOI | MR | Zbl

[29] A. M. Robert, A course in $p$-adic analysis, Grad. Texts in Math., 198, Springer-Verlag, New York, 2000, xvi+437 pp. | MR | Zbl

[30] N. Yui, “On the Jacobian varieties of hyperelliptic curves over fields of characteristic $p>2$”, J. Algebra, 52:2 (1978), 378–410 | DOI | MR | Zbl

[31] N. M. Katz, “The congruence of Clausen–von Staudt and Kummer for Bernoulli–Hurwitz numbers”, Math. Ann., 216 (1975), 1–4 | DOI | MR | Zbl

[32] Y. Morita, “A $p$-adic analogue of the $\varGamma$-function”, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 22:2 (1975), 255–266 | MR | Zbl

[33] H. Matsumura, Commutative ring theory, Cambridge Stud. Adv. Math., 8, Cambridge Univ. Press, Cambridge, 1986, xiv+320 pp. | MR | Zbl

[34] T. Ibukiyama, “Memoirs on ‘easy’ zeta functions”, Proceedings of the 9th summer school on “Zeta functions”, 2001, 235–248