@article{RM_2011_66_5_a0,
author = {E. P. Vdovin and D. O. Revin},
title = {Theorems of {Sylow} type},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {829--870},
year = {2011},
volume = {66},
number = {5},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2011_66_5_a0/}
}
E. P. Vdovin; D. O. Revin. Theorems of Sylow type. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 66 (2011) no. 5, pp. 829-870. http://geodesic.mathdoc.fr/item/RM_2011_66_5_a0/
[1] M. L. Sylow, “Théorèmes sur les groupes de substitutions”, Math. Ann., 5:4 (1872), 584–594 | DOI | MR | Zbl
[2] M. I. Kargapolov, Ju. I. Merzljakov, Fundamentals of the theory of groups, Graduate Texts in Math., 62, Springer-Verlag, New York–Berlin, 1979, xvii+203 pp. | MR | MR | Zbl | Zbl
[3] S. A. Chunikhin, Podgruppy konechnykh grupp, Nauka i tekhnika, Minsk, 1964 ; S. A. Chunikhin, Subgroups of finite groups, Wolters-Noordhoff Publishing, Groningen, 1969 | MR | Zbl | MR | Zbl
[4] B. Hartley, “Helmut Wielandt on the $\pi$-structure of finite groups”: H. Wielandt, Mathematische Werke / Mathematical Works, v. 1, Group theory, eds. B. Huppert and H. Sneider, de Gruyter, Berlin, 1994, 511–516 | MR
[5] W. Burnside, Theory of groups of finite order, 2nd ed., Univ. Press, Cambridge, 1911 | MR | Zbl
[6] P. Hall, “A note on soluble groups”, J. London Math. Soc., 3 (1928), 98–105 | DOI | Zbl
[7] P. Hall, “A characteristic property of soluble groups”, J. London Math. Soc., 12 (1937), 198–200 | DOI | Zbl
[8] S. A. Chunikhin, “O razreshimykh gruppakh”, Izv. NIIMM Tom. univ., 2 (1938), 220–223 | Zbl
[9] P. Hall, “Theorems like Sylow's”, Proc. London Math. Soc. (3), 6 (1956), 286–304 | DOI | MR | Zbl
[10] A. V. Romanovskii, “O chunikhinskoi teorii indeksialov”, Dokl. AN BSSR, 18 (1974), 297–299 | MR | Zbl
[11] A. V. Romanovskii, “Existence of Hall normal subgroups in finite groups”, Math. Notes, 16:3 (1974), 817–819 | DOI | MR | Zbl
[12] L. A. Shemetkov, A. F. Vasilev, “Nelokalnye formatsii konechnykh grupp”, Dokl. NAN Belarusi, 39 (1995), 5–8 | MR
[13] P. A. Golberg, “Silovskie bazy $\pi$-otdelimykh grupp”, Dokl. AN SSSR, 64:6 (1949), 615–618 | MR | Zbl
[14] L. S. Kazarin, “Teoremy silovskogo tipa dlya konechnykh grupp”, Strukturnye svoistva algebraicheskikh sistem, Kabardino-Balkarsk. univ., Nalchik, 1981, 42–52
[15] L. S. Kazarin, “On the product of finite groups”, Sov. Math. Dokl., 27 (1983), 354–357 | MR | Zbl
[16] M. I. Kargapolov, “O faktorizatsii $\pi$-otdelimykh grupp”, Dokl. AN SSSR, 114:6 (1957), 1155–1157 | MR | Zbl
[17] V. D. Mazurov, “On a question of L. A. Shemetkov”, Algebra and Logic, 31:6 (1992), 360–366 | DOI | MR | Zbl
[18] S. A. Rusakov, “Analogi teoremy Silova o vlozhenii podgrupp”, Dokl. AN BSSR, 5:4 (1961), 139–141 | MR | Zbl
[19] S. A. Rusakov, “Analogi teoremy Silova o suschestvovanii i vlozhenii podgrupp”, Sib. matem. zhurn., 4:5 (1963), 325–342 | MR | Zbl
[20] S. A. Rusakov, “$C$-teoremy dlya $n$-grupp”, Vestsi NAN Belarusi. Ser. fiz-mat. navuk, 1972, no. 3, 5–9 | MR | Zbl
[21] V. N. Tyutyanov, “$D_\pi$-teorema dlya konechnykh grupp, imeyuschikh kompozitsionnye faktory takie, chto 2-dlina lyuboi razreshimoi podgruppy ne prevoskhodit edinitsy”, Vestsi NAN Belarusi. Ser. fiz-mat. navuk, 2000, no. 1, 12–14 | MR
[22] V. N. Tyutyanov, “On theorems of the Sylow type for finite groups”, Ukrainian Math. J., 52:10 (2000), 1628–1633 | DOI | MR | Zbl
[23] V. N. Tyutyanov, “On a Hall hypothesis”, Ukrainian Math. J., 54:7 (2002), 1181–1191 | DOI | MR | Zbl
[24] S. A. Chunikhin, L. A. Shemetkov, “Finite groups”, J. Soviet Math., 1:3 (1973), 291–332 | DOI | MR | Zbl
[25] L. A. Shemetkov, “On Hall's theorem”, Sov. Math. Dokl., 3 (1962), 1624–1625 | MR | Zbl
[26] L. A. Shemetkov, “A new $D$-theorem in the theory of finite groups”, Sov. Math. Dokl., 6 (1965), 89–93 | MR | Zbl
[27] L. A. Šemetkov, “Sylow properties of finite groups”, Math. USSR-Sb., 5:2 (1968), 261–274 | DOI | MR | Zbl
[28] L. A. Shemetkov, “O silovskikh svoistvakh konechnykh grupp”, Dokl. AN BSSR, 16:10 (1972), 881–883 | MR | Zbl
[29] L. A. Shemetkov, “$D$-stroenie konechnykh grupp”, Matem. sb., 67(109):3 (1965), 384–407 | MR | Zbl
[30] L. A. Shemetkov, “O sopryazhennosti i vlozhenii podgrupp”, Konechnye gruppy, Minsk, 1966, 881–883
[31] L. A. Shemetkov, “Two directions in the development of the theory of non-simple finite groups”, Russian Math. Surveys, 30:2 (1975), 185–206 | DOI | MR | Zbl
[32] L. A. Shemetkov, Formatsii konechnykh grupp, Nauka, M., 1978 | MR | Zbl
[33] L. A. Shemetkov, “Generalizations of Sylow's theorem”, Sib. Math. J., 44:6 (2003), 1127–1132 | DOI | MR | Zbl
[34] Z. Arad, M. B. Ward, “New criteria for the solvability of finite groups”, J. Algebra, 77:1 (1982), 234–246 | DOI | MR | Zbl
[35] Z. Arad, D. Chilag, “A criterion for the existence of normal $\pi$-complements in finite groups”, J. Algebra, 87:2 (1984), 472–482 | DOI | MR | Zbl
[36] Z. Arad, E. Fisman, “On finite factorizable groups”, J. Algebra, 86:2 (1984), 522–548 | DOI | MR | Zbl
[37] R. Baer, “Verstreute Untergruppen endlicher Gruppen”, Arch. Math., 9:1-2 (1958), 7–17 | DOI | MR | Zbl
[38] E. L. Spitznagel, Jr., “Hall subgroups of certain families of finite groups”, Math. Z., 97:4 (1967), 259–290 | DOI | MR | Zbl
[39] M. P. Cooney, “The nonsolvable Hall subgroups of the general linear groups”, Math. Z., 114:4 (1970), 245–270 | DOI | MR | Zbl
[40] F. Gross, “Odd order Hall subgrous of $\operatorname{GL}(n,q)$ and $\operatorname{Sp}(2n,q)$”, Math. Z., 187:2 (1984), 185–194 | DOI | MR | Zbl
[41] F. Gross, “On the existence of Hall subgroups”, J. Algebra, 98:1 (1986), 1–13 | DOI | MR | Zbl
[42] F. Gross, “On a conjecture of Philip Hall”, Proc. London Math. Soc. (3), 52:3 (1986), 464–494 | DOI | MR | Zbl
[43] F. Gross, “Odd order Hall subgroups of the classical linear groups”, Math. Z., 220:3 (1995), 317–336 | DOI | MR | Zbl
[44] F. Gross, “Conjugacy of odd order Hall subgroups”, Bull. London Math. Soc., 19:4 (1987), 311–319 | DOI | MR | Zbl
[45] F. Gross, “Hall subgroups of order not divisible by 3”, Rocky Mountain J. Math., 23:2 (1993), 569–591 | DOI | MR | Zbl
[46] W. Guo, B. Li, “On the Shemetkov problem for Fitting classes”, Beiträge Algebra Geom., 48:1 (2007), 281–289 | MR | Zbl
[47] W. Guo, “Formations determined by Hall subgroups”, J. Appl. Algebra Discrete Struct., 4:3 (2006), 139–147 | MR | Zbl
[48] W. B. Guo, “Some problems and results for the research on Sylow objects of finite groups”, J. Xuzhou Norm. Univ. Nat. Sci. Ed., 23:3 (2005), 1–6 (Chinese) | MR | Zbl
[49] P. A. Ferguson, P. Kelley, “Hall $\pi$-subgroups which are direct product of nonabelian simple groups”, J. Algebra, 120:1 (1989), 40–46 | DOI | MR | Zbl
[50] B. Hartley, “A theorem of Sylow type for a finite groups”, Math. Z., 122:4 (1971), 223–226 | DOI | MR | Zbl
[51] P. Hall, “On the Sylow system of a soluble group”, Proc. London Math. Soc. (2), 43 (1937), 316–323 | DOI | Zbl
[52] N. Itô, “On $\Pi$-structures of finite groups”, Tôhoku Math. J., 4:1 (1952), 172–177 | DOI | MR | Zbl
[53] M. Suzuki, Group theory. II, Springer-Verlag, New York, 1986 | MR | Zbl
[54] M. C. Tibiletti, “Sui prodotti ordinati di gruppi finiti”, Boll. Un. Mat. Ital. (3), 13 (1958), 46–57 | MR | Zbl
[55] J. G. Thompson, “Hall subgroups of the symmetric groups”, J. Combin. Theory, 1:2 (1966), 271–279 | DOI | MR | Zbl
[56] H. Wielandt, “Zum Satz von Sylow”, Math. Z., 60:4 (1954), 407–408 | DOI | MR | Zbl
[57] H. Wielandt, “Sylowgruppen und Kompositions-Struktur”, Abh. Math. Sem. Univ. Hamburg, 22 (1958), 215–228 | DOI | MR | Zbl
[58] H. Wielandt, “Zum Satz von Sylow. II”, Math. Z., 71:4 (1959), 461–462 | DOI | MR | Zbl
[59] H. Wielandt, “Entwicklungslinien in der Strukturtheorie der endlichen Gruppen”, Proc. Intern. Congress Math. (Edinburgh, 1958), Cambridge Univ. Press, New York, 1960, 268–278 | MR | Zbl
[60] H. Wielandt, “Arithmetische Struktur und Normalstruktur endlicher Gruppen”, Conv. Internaz. di Teoria dei Gruppi Finiti e Applicazioni (Firenze, 1960), Edizioni Cremonese, Roma, 1960, 56–65 | MR | Zbl
[61] H. Wielandt, “Der Normalisator einer subnormalen Untergruppe”, Acta Sci. Math. Szeged, 21 (1960), 324–336 | MR | Zbl
[62] H. Wielandt, “Sylowtürme in subnormalen Untergruppen”, Math. Z., 73:4 (1960), 386–392 | DOI | MR | Zbl
[63] H. Wielandt, B. Huppert, “Arithmetical and normal structure of finite groups”, Proc. Symp. Pure Math., 6, Amer. Math. Soc., Providence, RI, 1962, 17–38 | MR | Zbl
[64] H. Wielandt, “Sur la structure des groupes composés”, Séminaire Dubreil-Pisot. Algèbre et Théorie des Nombres, 17, eds. M.-L. Dubreil-Jacotin, L. Lesieur, C. Pisot, 1963/64, 10 pp. | Zbl
[65] H. Wielandt, “Zusammengesetzte Gruppen: Hölders Programm heute”, The Santa Cruz Conference on Finite Groups (Univ. California, Santa Cruz, 1979), Proc. Sympos. Pure Math., 37, Amer. Math. Soc., Providence, RI, 1980, 161–173 | MR | Zbl
[66] G. Zappa, “Sopra un'estensione di Wielandt del teorema di Sylow”, Boll. Un. Mat. Ital. (3), 9:4 (954), 349–353 | MR | Zbl
[67] A. I. Kostrikin, “Konechnye gruppy”, Itogi nauki i tekhniki. Algebra. Topol. Geom. 1964, VINITI, M., 1966, 7–46 | MR | Zbl
[68] K. Doerk, T. Hawks, Finite soluble groups, de Gruyter Exp. Math., 4, de Gruyter, Berlin, 1992 | MR | Zbl
[69] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, R. A. Wilson, Atlas of finite groups. Maximal subgroups and ordinary characters for simple groups, Oxford Univ. Press, Eynsham, 1985 | MR | Zbl
[70] A. S. Kondrat'ev, “Subgroups of finite Chevalley groups”, Russian Math. Surveys, 41:1 (1986), 65–118 | DOI | MR | Zbl
[71] D. O. Revin, “Hall $\pi$-subgroups of finite Chevalley groups whose characteristic belongs to $\pi$”, Sib. Adv. Math., 9:2 (1999), 25–71 | MR | MR | Zbl | Zbl
[72] D. O. Revin, “The $D_\pi$-property in a class of finite groups”, Algebra and Logic, 41:3 (2002), 187–206 | DOI | MR | Zbl
[73] Ph. Cobb, “Existence of Hall subgroups and embedding of $\pi$-subgroups into Hall subgroups”, J. Algebra, 127:1 (1989), 229–243 | DOI | MR | Zbl
[74] E. P. Vdovin, D. O. Revin, “Hall subgroups of odd order in finite groups”, Algebra and Logic, 41:1 (2002), 8–29 | DOI | MR | Zbl
[75] D. O. Revin, E. P. Vdovin, “Hall subgroups of finite groups”, Ischia group theory 2004, Proceedings of a conference in honor of Marcel Herzog (Naples, Italy, 2004), Contemp. Math., 402, Amer. Math. Soc., Providence, RI; Bar-Ilan University, Ramat Gan, 2006, 229–263 | MR | Zbl
[76] D. O. Revin, E. P. Vdovin, “On the number of classes of conjugate Hall subgroups in finite simple groups”, J. Algebra, 324:12 (2010), 3614–3652 ; arXiv: 0912.1922v1 | DOI | MR | Zbl
[77] D. O. Revin, “A characterization of finite $D_\pi$-groups”, Dokl. Math., 76:3 (2007), 925–928 | DOI | MR | Zbl
[78] D. O. Revin, “The property $D_\pi$ in linear and unitary groups”, Sib. Math. J., 49:2 (2008), 353–361 | DOI | MR | Zbl
[79] D. O. Revin, “The $D_{\pi}$-property in finite simple groups”, Algebra and Logic, 47:3 (2008), 210–227 | DOI | MR | Zbl
[80] D. O. Revin, E. P. Vdovin, “Existence criterion for Hall subgroups of finite groups”, J. Group Theory, 14:1 (2011), 93–101 ; arXiv: 0803.3868v3 | DOI | MR | Zbl
[81] D. O. Revin, E. P. Vdovin, “Conjugacy criterion for Hall subgroups of finite groups”, Sib. Math. J., 51:3 (2010), 402–409 | DOI | MR | Zbl
[82] W. Feit, J. G. Thompson, “Solvability of groups of odd order”, Pacific J. Math., 13:3 (1963), 775–1029 ; http://projecteuclid.org/euclid.pjm/1103053943 | MR | Zbl
[83] H. Zassenhaus, Lehrbuch der Gruppentheorie, Teubner, Leipzig–Berlin, 1937 | Zbl
[84] S. A. Chunikhin, “O silovskikh svoistvakh konechnykh grupp”, Dokl. AN SSSR, 73:1 (1950), 29–32 | MR | Zbl
[85] S. A. Chunikhin, “O silovski-pravilnykh gruppakh”, Dokl. AN SSSR, 60:5 (1948), 773–774 | MR | Zbl
[86] S. A. Chunikhin, “On $\Pi$-properties of finite groups”, Amer. Math. Soc. Transl., 1952, no. 72, 32 pp. | MR | MR | Zbl
[87] S. A. Chunikhin, “Ob usloviyakh teorem tipa Silova”, Dokl. AN SSSR, 69:6 (1949), 735–737 | MR | Zbl
[88] S. A. Chunikhin, “Ob oslablenii uslovii v teoremakh tipa Silova”, Dokl. AN SSSR, 83:5 (1952), 663–665 | MR | Zbl
[89] S. A. Chunikhin, “O podgruppakh konechnoi gruppy”, Dokl. AN SSSR, 86:1 (1952), 27–30 | MR | Zbl
[90] S. A. Chunikhin, “O suschestvovanii i sopryazhennosti podgrupp u konechnoi gruppy”, Matem. sb., 33(75):1 (1953), 111–132 | MR | Zbl
[91] S. A. Chunikhin, “O $\pi$-razreshimykh podgruppakh konechnykh grupp”, Dokl. AN SSSR, 103:3 (1955), 377–378 | MR | Zbl
[92] S. A. Chunikhin, “Some trends in the development of the theory of finite groups in recent years”, Russian Math. Surveys, 16:4 (1961), 29–46 | DOI | MR | Zbl
[93] S. A. Chunikhin, “On indexials of finite groups”, Sov. Math. Dokl., 2 (1961), 70–71 | MR | Zbl
[94] S. A. Chunikhin, “Ob odnoi $\pi$-silovskoi teoreme, vytekayuschei iz gipotezy o razreshimosti grupp nechetnogo poryadka”, Dokl. AN BSSR, 6:6 (1962), 345–346 | MR
[95] S. A. Chunikhin, “On the definition of $\pi$-solvable and $\pi$-separable groups”, Sov. Math. Dokl., 14 (1973), 1558–1562 | MR | Zbl
[96] Kourovskaya tetrad. Nereshennye voprosy teorii grupp, 17-e izd., dopoln., eds. V. D. Mazurov, E. I. Khukhro, Rossiiskaya akademiya nauk, Sibirskoe otdelenie, Institut matematiki, Novosibirsk, 2010
[97] V. D. Mazurov, D. O. Revin, “On the Hall $D_\pi$-property for finite groups”, Sib. Math. J., 38:1 (1997), 106–113 | DOI | MR | Zbl
[98] D. O. Revin, “The $D_\pi$ property of finite groups in the case $2\notin\pi$”, Proc. Steklov Inst. Math., 257, suppl. 1 (2007), S164–S180 | DOI | MR
[99] R. Baer, “Engelsche Elemente Noetherscher Gruppen”, Math. Ann., 133 (1957), 256–270 | DOI | MR | Zbl
[100] M. Suzuki, “Finite groups in which the centralizer of any element of order 2 is 2-closed”, Ann. of Math. (2), 82 (1965), 191–212 | DOI | MR | Zbl
[101] D. O. Revin, “On Baer–Suzuki $\pi$-theorems”, Sib. Math. J., 52:2 (2011), 340–347 | DOI
[102] D. O. Revin, “On a relation between the Sylow and Baer–Suzuki theorems”, Sib. Math. J., 52:5 (2011), 904–913 | DOI
[103] V. I. Zenkov, “Peresecheniya nilpotentnykh podgrupp v konechnykh gruppakh”, Fundament. i prikl. matem., 2:1 (1996), 1–92 | MR | Zbl
[104] E. P. Vdovin, “Regular orbits of solvable linear $p'$-groups”, Sib. elektron. matem. izv., 4 (2007), 345–360 | MR | Zbl
[105] S. Dolfi, “Large orbits in coprime actions of solvable groups”, Trans. Amer. Math. Soc., 360:1 (2008), 135–152 | DOI | MR | Zbl
[106] E. P. Vdovin, D. O. Revin, “Pronormalnost khollovykh podgrupp v konechnykh prostykh gruppakh”, Sib. matem. zhurn., prinyato k pechati
[107] P. Hall, “On the system normalizers of a soluble groups”, Proc. London Math. Soc. (2), 43 (1937), 507–528 | DOI | Zbl
[108] E. P. Vdovin, D. O. Revin, “O pronormalnosti khollovykh podgrupp”, Sib. matem. zhurn., prinyato k pechati
[109] E. P. Vdovin, D. O. Revin, L. A. Shemetkov, “Formatsii $C_\pi$-grupp”, Algebra i analiz, 24 (2012), prinyato k pechati
[110] D. O. Revin, “Vokrug gipotezy F. Kholla”, Sib. elektron. matem. izv., 6 (2009), 366–380 | MR
[111] J. E. Humphreys, Linear algebraic groups, Grad. Texts in Math., 21, Springer-Verlag, New York–Heidelberg, 1975 | MR | MR | Zbl | Zbl
[112] R. W. Carter, Simple groups of Lie type, Pure Appl. Math., 28, Wiley, London–New York–Sydney, 1972 | MR | Zbl
[113] P. B. Kleidman, M. Liebeck, The subgroups structure of finite classical groups, London Math. Soc. Lecture Note Ser., 129, Cambridge Univ. Press, Cambridge, 1990 | MR | Zbl