Theorems of Sylow type
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 66 (2011) no. 5, pp. 829-870

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\pi$ be a set of primes. Generalizing the known properties of Sylow subgroups, Hall introduced the classes $E_\pi$, $C_\pi$, and $D_\pi$ of finite groups that contain a Hall $\pi$-subgroup, precisely one conjugacy class of Hall $\pi$-subgroups, and precisely one conjugacy class of maximal $\pi$-subgroups, respectively. The present paper concerns results about $E_\pi$, $C_\pi$, and $D_\pi$ that have been obtained by different authors at different times. Bibliography: 113 titles.
Keywords: Hall subgroup, finite group, finite simple group, Hall property, existence criterion for Hall subgroups, conjugacy criterion for Hall subgroups, finite groups of Lie type, an analogue of Sylow's theorem for Hall subgroups.
@article{RM_2011_66_5_a0,
     author = {E. P. Vdovin and D. O. Revin},
     title = {Theorems of {Sylow} type},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {829--870},
     publisher = {mathdoc},
     volume = {66},
     number = {5},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2011_66_5_a0/}
}
TY  - JOUR
AU  - E. P. Vdovin
AU  - D. O. Revin
TI  - Theorems of Sylow type
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2011
SP  - 829
EP  - 870
VL  - 66
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RM_2011_66_5_a0/
LA  - en
ID  - RM_2011_66_5_a0
ER  - 
%0 Journal Article
%A E. P. Vdovin
%A D. O. Revin
%T Theorems of Sylow type
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2011
%P 829-870
%V 66
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RM_2011_66_5_a0/
%G en
%F RM_2011_66_5_a0
E. P. Vdovin; D. O. Revin. Theorems of Sylow type. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 66 (2011) no. 5, pp. 829-870. http://geodesic.mathdoc.fr/item/RM_2011_66_5_a0/