Theorems of Sylow type
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 66 (2011) no. 5, pp. 829-870 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $\pi$ be a set of primes. Generalizing the known properties of Sylow subgroups, Hall introduced the classes $E_\pi$, $C_\pi$, and $D_\pi$ of finite groups that contain a Hall $\pi$-subgroup, precisely one conjugacy class of Hall $\pi$-subgroups, and precisely one conjugacy class of maximal $\pi$-subgroups, respectively. The present paper concerns results about $E_\pi$, $C_\pi$, and $D_\pi$ that have been obtained by different authors at different times. Bibliography: 113 titles.
Keywords: Hall subgroup, finite group, finite simple group, Hall property, existence criterion for Hall subgroups, conjugacy criterion for Hall subgroups, finite groups of Lie type, an analogue of Sylow's theorem for Hall subgroups.
@article{RM_2011_66_5_a0,
     author = {E. P. Vdovin and D. O. Revin},
     title = {Theorems of {Sylow} type},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {829--870},
     year = {2011},
     volume = {66},
     number = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2011_66_5_a0/}
}
TY  - JOUR
AU  - E. P. Vdovin
AU  - D. O. Revin
TI  - Theorems of Sylow type
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2011
SP  - 829
EP  - 870
VL  - 66
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/RM_2011_66_5_a0/
LA  - en
ID  - RM_2011_66_5_a0
ER  - 
%0 Journal Article
%A E. P. Vdovin
%A D. O. Revin
%T Theorems of Sylow type
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2011
%P 829-870
%V 66
%N 5
%U http://geodesic.mathdoc.fr/item/RM_2011_66_5_a0/
%G en
%F RM_2011_66_5_a0
E. P. Vdovin; D. O. Revin. Theorems of Sylow type. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 66 (2011) no. 5, pp. 829-870. http://geodesic.mathdoc.fr/item/RM_2011_66_5_a0/

[1] M. L. Sylow, “Théorèmes sur les groupes de substitutions”, Math. Ann., 5:4 (1872), 584–594 | DOI | MR | Zbl

[2] M. I. Kargapolov, Ju. I. Merzljakov, Fundamentals of the theory of groups, Graduate Texts in Math., 62, Springer-Verlag, New York–Berlin, 1979, xvii+203 pp. | MR | MR | Zbl | Zbl

[3] S. A. Chunikhin, Podgruppy konechnykh grupp, Nauka i tekhnika, Minsk, 1964 ; S. A. Chunikhin, Subgroups of finite groups, Wolters-Noordhoff Publishing, Groningen, 1969 | MR | Zbl | MR | Zbl

[4] B. Hartley, “Helmut Wielandt on the $\pi$-structure of finite groups”: H. Wielandt, Mathematische Werke / Mathematical Works, v. 1, Group theory, eds. B. Huppert and H. Sneider, de Gruyter, Berlin, 1994, 511–516 | MR

[5] W. Burnside, Theory of groups of finite order, 2nd ed., Univ. Press, Cambridge, 1911 | MR | Zbl

[6] P. Hall, “A note on soluble groups”, J. London Math. Soc., 3 (1928), 98–105 | DOI | Zbl

[7] P. Hall, “A characteristic property of soluble groups”, J. London Math. Soc., 12 (1937), 198–200 | DOI | Zbl

[8] S. A. Chunikhin, “O razreshimykh gruppakh”, Izv. NIIMM Tom. univ., 2 (1938), 220–223 | Zbl

[9] P. Hall, “Theorems like Sylow's”, Proc. London Math. Soc. (3), 6 (1956), 286–304 | DOI | MR | Zbl

[10] A. V. Romanovskii, “O chunikhinskoi teorii indeksialov”, Dokl. AN BSSR, 18 (1974), 297–299 | MR | Zbl

[11] A. V. Romanovskii, “Existence of Hall normal subgroups in finite groups”, Math. Notes, 16:3 (1974), 817–819 | DOI | MR | Zbl

[12] L. A. Shemetkov, A. F. Vasilev, “Nelokalnye formatsii konechnykh grupp”, Dokl. NAN Belarusi, 39 (1995), 5–8 | MR

[13] P. A. Golberg, “Silovskie bazy $\pi$-otdelimykh grupp”, Dokl. AN SSSR, 64:6 (1949), 615–618 | MR | Zbl

[14] L. S. Kazarin, “Teoremy silovskogo tipa dlya konechnykh grupp”, Strukturnye svoistva algebraicheskikh sistem, Kabardino-Balkarsk. univ., Nalchik, 1981, 42–52

[15] L. S. Kazarin, “On the product of finite groups”, Sov. Math. Dokl., 27 (1983), 354–357 | MR | Zbl

[16] M. I. Kargapolov, “O faktorizatsii $\pi$-otdelimykh grupp”, Dokl. AN SSSR, 114:6 (1957), 1155–1157 | MR | Zbl

[17] V. D. Mazurov, “On a question of L. A. Shemetkov”, Algebra and Logic, 31:6 (1992), 360–366 | DOI | MR | Zbl

[18] S. A. Rusakov, “Analogi teoremy Silova o vlozhenii podgrupp”, Dokl. AN BSSR, 5:4 (1961), 139–141 | MR | Zbl

[19] S. A. Rusakov, “Analogi teoremy Silova o suschestvovanii i vlozhenii podgrupp”, Sib. matem. zhurn., 4:5 (1963), 325–342 | MR | Zbl

[20] S. A. Rusakov, “$C$-teoremy dlya $n$-grupp”, Vestsi NAN Belarusi. Ser. fiz-mat. navuk, 1972, no. 3, 5–9 | MR | Zbl

[21] V. N. Tyutyanov, “$D_\pi$-teorema dlya konechnykh grupp, imeyuschikh kompozitsionnye faktory takie, chto 2-dlina lyuboi razreshimoi podgruppy ne prevoskhodit edinitsy”, Vestsi NAN Belarusi. Ser. fiz-mat. navuk, 2000, no. 1, 12–14 | MR

[22] V. N. Tyutyanov, “On theorems of the Sylow type for finite groups”, Ukrainian Math. J., 52:10 (2000), 1628–1633 | DOI | MR | Zbl

[23] V. N. Tyutyanov, “On a Hall hypothesis”, Ukrainian Math. J., 54:7 (2002), 1181–1191 | DOI | MR | Zbl

[24] S. A. Chunikhin, L. A. Shemetkov, “Finite groups”, J. Soviet Math., 1:3 (1973), 291–332 | DOI | MR | Zbl

[25] L. A. Shemetkov, “On Hall's theorem”, Sov. Math. Dokl., 3 (1962), 1624–1625 | MR | Zbl

[26] L. A. Shemetkov, “A new $D$-theorem in the theory of finite groups”, Sov. Math. Dokl., 6 (1965), 89–93 | MR | Zbl

[27] L. A. Šemetkov, “Sylow properties of finite groups”, Math. USSR-Sb., 5:2 (1968), 261–274 | DOI | MR | Zbl

[28] L. A. Shemetkov, “O silovskikh svoistvakh konechnykh grupp”, Dokl. AN BSSR, 16:10 (1972), 881–883 | MR | Zbl

[29] L. A. Shemetkov, “$D$-stroenie konechnykh grupp”, Matem. sb., 67(109):3 (1965), 384–407 | MR | Zbl

[30] L. A. Shemetkov, “O sopryazhennosti i vlozhenii podgrupp”, Konechnye gruppy, Minsk, 1966, 881–883

[31] L. A. Shemetkov, “Two directions in the development of the theory of non-simple finite groups”, Russian Math. Surveys, 30:2 (1975), 185–206 | DOI | MR | Zbl

[32] L. A. Shemetkov, Formatsii konechnykh grupp, Nauka, M., 1978 | MR | Zbl

[33] L. A. Shemetkov, “Generalizations of Sylow's theorem”, Sib. Math. J., 44:6 (2003), 1127–1132 | DOI | MR | Zbl

[34] Z. Arad, M. B. Ward, “New criteria for the solvability of finite groups”, J. Algebra, 77:1 (1982), 234–246 | DOI | MR | Zbl

[35] Z. Arad, D. Chilag, “A criterion for the existence of normal $\pi$-complements in finite groups”, J. Algebra, 87:2 (1984), 472–482 | DOI | MR | Zbl

[36] Z. Arad, E. Fisman, “On finite factorizable groups”, J. Algebra, 86:2 (1984), 522–548 | DOI | MR | Zbl

[37] R. Baer, “Verstreute Untergruppen endlicher Gruppen”, Arch. Math., 9:1-2 (1958), 7–17 | DOI | MR | Zbl

[38] E. L. Spitznagel, Jr., “Hall subgroups of certain families of finite groups”, Math. Z., 97:4 (1967), 259–290 | DOI | MR | Zbl

[39] M. P. Cooney, “The nonsolvable Hall subgroups of the general linear groups”, Math. Z., 114:4 (1970), 245–270 | DOI | MR | Zbl

[40] F. Gross, “Odd order Hall subgrous of $\operatorname{GL}(n,q)$ and $\operatorname{Sp}(2n,q)$”, Math. Z., 187:2 (1984), 185–194 | DOI | MR | Zbl

[41] F. Gross, “On the existence of Hall subgroups”, J. Algebra, 98:1 (1986), 1–13 | DOI | MR | Zbl

[42] F. Gross, “On a conjecture of Philip Hall”, Proc. London Math. Soc. (3), 52:3 (1986), 464–494 | DOI | MR | Zbl

[43] F. Gross, “Odd order Hall subgroups of the classical linear groups”, Math. Z., 220:3 (1995), 317–336 | DOI | MR | Zbl

[44] F. Gross, “Conjugacy of odd order Hall subgroups”, Bull. London Math. Soc., 19:4 (1987), 311–319 | DOI | MR | Zbl

[45] F. Gross, “Hall subgroups of order not divisible by 3”, Rocky Mountain J. Math., 23:2 (1993), 569–591 | DOI | MR | Zbl

[46] W. Guo, B. Li, “On the Shemetkov problem for Fitting classes”, Beiträge Algebra Geom., 48:1 (2007), 281–289 | MR | Zbl

[47] W. Guo, “Formations determined by Hall subgroups”, J. Appl. Algebra Discrete Struct., 4:3 (2006), 139–147 | MR | Zbl

[48] W. B. Guo, “Some problems and results for the research on Sylow objects of finite groups”, J. Xuzhou Norm. Univ. Nat. Sci. Ed., 23:3 (2005), 1–6 (Chinese) | MR | Zbl

[49] P. A. Ferguson, P. Kelley, “Hall $\pi$-subgroups which are direct product of nonabelian simple groups”, J. Algebra, 120:1 (1989), 40–46 | DOI | MR | Zbl

[50] B. Hartley, “A theorem of Sylow type for a finite groups”, Math. Z., 122:4 (1971), 223–226 | DOI | MR | Zbl

[51] P. Hall, “On the Sylow system of a soluble group”, Proc. London Math. Soc. (2), 43 (1937), 316–323 | DOI | Zbl

[52] N. Itô, “On $\Pi$-structures of finite groups”, Tôhoku Math. J., 4:1 (1952), 172–177 | DOI | MR | Zbl

[53] M. Suzuki, Group theory. II, Springer-Verlag, New York, 1986 | MR | Zbl

[54] M. C. Tibiletti, “Sui prodotti ordinati di gruppi finiti”, Boll. Un. Mat. Ital. (3), 13 (1958), 46–57 | MR | Zbl

[55] J. G. Thompson, “Hall subgroups of the symmetric groups”, J. Combin. Theory, 1:2 (1966), 271–279 | DOI | MR | Zbl

[56] H. Wielandt, “Zum Satz von Sylow”, Math. Z., 60:4 (1954), 407–408 | DOI | MR | Zbl

[57] H. Wielandt, “Sylowgruppen und Kompositions-Struktur”, Abh. Math. Sem. Univ. Hamburg, 22 (1958), 215–228 | DOI | MR | Zbl

[58] H. Wielandt, “Zum Satz von Sylow. II”, Math. Z., 71:4 (1959), 461–462 | DOI | MR | Zbl

[59] H. Wielandt, “Entwicklungslinien in der Strukturtheorie der endlichen Gruppen”, Proc. Intern. Congress Math. (Edinburgh, 1958), Cambridge Univ. Press, New York, 1960, 268–278 | MR | Zbl

[60] H. Wielandt, “Arithmetische Struktur und Normalstruktur endlicher Gruppen”, Conv. Internaz. di Teoria dei Gruppi Finiti e Applicazioni (Firenze, 1960), Edizioni Cremonese, Roma, 1960, 56–65 | MR | Zbl

[61] H. Wielandt, “Der Normalisator einer subnormalen Untergruppe”, Acta Sci. Math. Szeged, 21 (1960), 324–336 | MR | Zbl

[62] H. Wielandt, “Sylowtürme in subnormalen Untergruppen”, Math. Z., 73:4 (1960), 386–392 | DOI | MR | Zbl

[63] H. Wielandt, B. Huppert, “Arithmetical and normal structure of finite groups”, Proc. Symp. Pure Math., 6, Amer. Math. Soc., Providence, RI, 1962, 17–38 | MR | Zbl

[64] H. Wielandt, “Sur la structure des groupes composés”, Séminaire Dubreil-Pisot. Algèbre et Théorie des Nombres, 17, eds. M.-L. Dubreil-Jacotin, L. Lesieur, C. Pisot, 1963/64, 10 pp. | Zbl

[65] H. Wielandt, “Zusammengesetzte Gruppen: Hölders Programm heute”, The Santa Cruz Conference on Finite Groups (Univ. California, Santa Cruz, 1979), Proc. Sympos. Pure Math., 37, Amer. Math. Soc., Providence, RI, 1980, 161–173 | MR | Zbl

[66] G. Zappa, “Sopra un'estensione di Wielandt del teorema di Sylow”, Boll. Un. Mat. Ital. (3), 9:4 (954), 349–353 | MR | Zbl

[67] A. I. Kostrikin, “Konechnye gruppy”, Itogi nauki i tekhniki. Algebra. Topol. Geom. 1964, VINITI, M., 1966, 7–46 | MR | Zbl

[68] K. Doerk, T. Hawks, Finite soluble groups, de Gruyter Exp. Math., 4, de Gruyter, Berlin, 1992 | MR | Zbl

[69] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, R. A. Wilson, Atlas of finite groups. Maximal subgroups and ordinary characters for simple groups, Oxford Univ. Press, Eynsham, 1985 | MR | Zbl

[70] A. S. Kondrat'ev, “Subgroups of finite Chevalley groups”, Russian Math. Surveys, 41:1 (1986), 65–118 | DOI | MR | Zbl

[71] D. O. Revin, “Hall $\pi$-subgroups of finite Chevalley groups whose characteristic belongs to $\pi$”, Sib. Adv. Math., 9:2 (1999), 25–71 | MR | MR | Zbl | Zbl

[72] D. O. Revin, “The $D_\pi$-property in a class of finite groups”, Algebra and Logic, 41:3 (2002), 187–206 | DOI | MR | Zbl

[73] Ph. Cobb, “Existence of Hall subgroups and embedding of $\pi$-subgroups into Hall subgroups”, J. Algebra, 127:1 (1989), 229–243 | DOI | MR | Zbl

[74] E. P. Vdovin, D. O. Revin, “Hall subgroups of odd order in finite groups”, Algebra and Logic, 41:1 (2002), 8–29 | DOI | MR | Zbl

[75] D. O. Revin, E. P. Vdovin, “Hall subgroups of finite groups”, Ischia group theory 2004, Proceedings of a conference in honor of Marcel Herzog (Naples, Italy, 2004), Contemp. Math., 402, Amer. Math. Soc., Providence, RI; Bar-Ilan University, Ramat Gan, 2006, 229–263 | MR | Zbl

[76] D. O. Revin, E. P. Vdovin, “On the number of classes of conjugate Hall subgroups in finite simple groups”, J. Algebra, 324:12 (2010), 3614–3652 ; arXiv: 0912.1922v1 | DOI | MR | Zbl

[77] D. O. Revin, “A characterization of finite $D_\pi$-groups”, Dokl. Math., 76:3 (2007), 925–928 | DOI | MR | Zbl

[78] D. O. Revin, “The property $D_\pi$ in linear and unitary groups”, Sib. Math. J., 49:2 (2008), 353–361 | DOI | MR | Zbl

[79] D. O. Revin, “The $D_{\pi}$-property in finite simple groups”, Algebra and Logic, 47:3 (2008), 210–227 | DOI | MR | Zbl

[80] D. O. Revin, E. P. Vdovin, “Existence criterion for Hall subgroups of finite groups”, J. Group Theory, 14:1 (2011), 93–101 ; arXiv: 0803.3868v3 | DOI | MR | Zbl

[81] D. O. Revin, E. P. Vdovin, “Conjugacy criterion for Hall subgroups of finite groups”, Sib. Math. J., 51:3 (2010), 402–409 | DOI | MR | Zbl

[82] W. Feit, J. G. Thompson, “Solvability of groups of odd order”, Pacific J. Math., 13:3 (1963), 775–1029 ; http://projecteuclid.org/euclid.pjm/1103053943 | MR | Zbl

[83] H. Zassenhaus, Lehrbuch der Gruppentheorie, Teubner, Leipzig–Berlin, 1937 | Zbl

[84] S. A. Chunikhin, “O silovskikh svoistvakh konechnykh grupp”, Dokl. AN SSSR, 73:1 (1950), 29–32 | MR | Zbl

[85] S. A. Chunikhin, “O silovski-pravilnykh gruppakh”, Dokl. AN SSSR, 60:5 (1948), 773–774 | MR | Zbl

[86] S. A. Chunikhin, “On $\Pi$-properties of finite groups”, Amer. Math. Soc. Transl., 1952, no. 72, 32 pp. | MR | MR | Zbl

[87] S. A. Chunikhin, “Ob usloviyakh teorem tipa Silova”, Dokl. AN SSSR, 69:6 (1949), 735–737 | MR | Zbl

[88] S. A. Chunikhin, “Ob oslablenii uslovii v teoremakh tipa Silova”, Dokl. AN SSSR, 83:5 (1952), 663–665 | MR | Zbl

[89] S. A. Chunikhin, “O podgruppakh konechnoi gruppy”, Dokl. AN SSSR, 86:1 (1952), 27–30 | MR | Zbl

[90] S. A. Chunikhin, “O suschestvovanii i sopryazhennosti podgrupp u konechnoi gruppy”, Matem. sb., 33(75):1 (1953), 111–132 | MR | Zbl

[91] S. A. Chunikhin, “O $\pi$-razreshimykh podgruppakh konechnykh grupp”, Dokl. AN SSSR, 103:3 (1955), 377–378 | MR | Zbl

[92] S. A. Chunikhin, “Some trends in the development of the theory of finite groups in recent years”, Russian Math. Surveys, 16:4 (1961), 29–46 | DOI | MR | Zbl

[93] S. A. Chunikhin, “On indexials of finite groups”, Sov. Math. Dokl., 2 (1961), 70–71 | MR | Zbl

[94] S. A. Chunikhin, “Ob odnoi $\pi$-silovskoi teoreme, vytekayuschei iz gipotezy o razreshimosti grupp nechetnogo poryadka”, Dokl. AN BSSR, 6:6 (1962), 345–346 | MR

[95] S. A. Chunikhin, “On the definition of $\pi$-solvable and $\pi$-separable groups”, Sov. Math. Dokl., 14 (1973), 1558–1562 | MR | Zbl

[96] Kourovskaya tetrad. Nereshennye voprosy teorii grupp, 17-e izd., dopoln., eds. V. D. Mazurov, E. I. Khukhro, Rossiiskaya akademiya nauk, Sibirskoe otdelenie, Institut matematiki, Novosibirsk, 2010

[97] V. D. Mazurov, D. O. Revin, “On the Hall $D_\pi$-property for finite groups”, Sib. Math. J., 38:1 (1997), 106–113 | DOI | MR | Zbl

[98] D. O. Revin, “The $D_\pi$ property of finite groups in the case $2\notin\pi$”, Proc. Steklov Inst. Math., 257, suppl. 1 (2007), S164–S180 | DOI | MR

[99] R. Baer, “Engelsche Elemente Noetherscher Gruppen”, Math. Ann., 133 (1957), 256–270 | DOI | MR | Zbl

[100] M. Suzuki, “Finite groups in which the centralizer of any element of order 2 is 2-closed”, Ann. of Math. (2), 82 (1965), 191–212 | DOI | MR | Zbl

[101] D. O. Revin, “On Baer–Suzuki $\pi$-theorems”, Sib. Math. J., 52:2 (2011), 340–347 | DOI

[102] D. O. Revin, “On a relation between the Sylow and Baer–Suzuki theorems”, Sib. Math. J., 52:5 (2011), 904–913 | DOI

[103] V. I. Zenkov, “Peresecheniya nilpotentnykh podgrupp v konechnykh gruppakh”, Fundament. i prikl. matem., 2:1 (1996), 1–92 | MR | Zbl

[104] E. P. Vdovin, “Regular orbits of solvable linear $p'$-groups”, Sib. elektron. matem. izv., 4 (2007), 345–360 | MR | Zbl

[105] S. Dolfi, “Large orbits in coprime actions of solvable groups”, Trans. Amer. Math. Soc., 360:1 (2008), 135–152 | DOI | MR | Zbl

[106] E. P. Vdovin, D. O. Revin, “Pronormalnost khollovykh podgrupp v konechnykh prostykh gruppakh”, Sib. matem. zhurn., prinyato k pechati

[107] P. Hall, “On the system normalizers of a soluble groups”, Proc. London Math. Soc. (2), 43 (1937), 507–528 | DOI | Zbl

[108] E. P. Vdovin, D. O. Revin, “O pronormalnosti khollovykh podgrupp”, Sib. matem. zhurn., prinyato k pechati

[109] E. P. Vdovin, D. O. Revin, L. A. Shemetkov, “Formatsii $C_\pi$-grupp”, Algebra i analiz, 24 (2012), prinyato k pechati

[110] D. O. Revin, “Vokrug gipotezy F. Kholla”, Sib. elektron. matem. izv., 6 (2009), 366–380 | MR

[111] J. E. Humphreys, Linear algebraic groups, Grad. Texts in Math., 21, Springer-Verlag, New York–Heidelberg, 1975 | MR | MR | Zbl | Zbl

[112] R. W. Carter, Simple groups of Lie type, Pure Appl. Math., 28, Wiley, London–New York–Sydney, 1972 | MR | Zbl

[113] P. B. Kleidman, M. Liebeck, The subgroups structure of finite classical groups, London Math. Soc. Lecture Note Ser., 129, Cambridge Univ. Press, Cambridge, 1990 | MR | Zbl