Mots-clés : KP equation
@article{RM_2011_66_4_a2,
author = {J. Harnad and V. Z. Enolski},
title = {Schur function expansions of {KP} $\tau$-functions associated to algebraic curves},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {767--807},
year = {2011},
volume = {66},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2011_66_4_a2/}
}
TY - JOUR AU - J. Harnad AU - V. Z. Enolski TI - Schur function expansions of KP $\tau$-functions associated to algebraic curves JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2011 SP - 767 EP - 807 VL - 66 IS - 4 UR - http://geodesic.mathdoc.fr/item/RM_2011_66_4_a2/ LA - en ID - RM_2011_66_4_a2 ER -
J. Harnad; V. Z. Enolski. Schur function expansions of KP $\tau$-functions associated to algebraic curves. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 66 (2011) no. 4, pp. 767-807. http://geodesic.mathdoc.fr/item/RM_2011_66_4_a2/
[1] S. P. Novikov, “The periodic problem for the Korteweg–de Vries equation”, Funct. Anal. Appl., 8:3 (1974), 236–246 | DOI | Zbl
[2] B. A. Dubrovin, S. P. Novikov, “Periodic and conditionally periodic analogs of the many-soliton solutions of the Korteweg–de Vries equation”, Soviet Physics JETP, 40:6 (1974), 1058–1063 | MR
[3] B. A. Dubrovin, “Inverse problem for periodic finite-zoned potentials in the theory of scattering”, Funct. Anal. Appl., 9:1 (1975), 61–62 | DOI | MR | Zbl
[4] A. R. Its, V. B. Matveev, “Schrödinger operators with finite-gap spectrum and $N$-soliton solutions of the Korteweg–de Vries equation”, Theoret. Math. Phys., 23:1 (1975), 343–355 | DOI | MR
[5] A. R. Its, V. B. Matveev, “Ob odnom klasse reshenii uravneniya KdF”, Problemy matematicheskoi fiziki, 8, Izd-vo Leningr. un-ta, L., 1976, 70–92 | MR
[6] V. A. Marchenko, “Periodic solutions of the KdV equation”, Soviet Math. Dokl., 15 (1974), 1052–1056 | MR | Zbl
[7] P. D. Lax, “Periodic solutions of the KdV equation”, Comm. Pure Appl. Math., 28:1 (1975), 141–188 | DOI | MR | Zbl
[8] H. P. McKean, P. Moerbeke, “The spectrum of Hill's equation”, Invent. Math., 30:3 (1975), 217–274 | DOI | MR | Zbl
[9] E. Date, S. Tanaka, “Periodic multi-soliton solutions of Korteweg–de Vries equation and Toda lattice”, Progr. Theoret. Phys. Suppl., 1976, no. 59, 107–125 | DOI | MR
[10] B. A. Dubrovin, V. B. Matveev, S. P. Novikov, “Non-linear equations of Korteweg–de Vries type, finite-zone linear operators, and Abelian varieties”, Russian Math. Surveys, 31:1 (1976), 59–146 | DOI | MR | Zbl
[11] I. M. Krichever, “Methods of algebraic geometry in the theory of non-linear equations”, Russian Math. Surveys, 32:6 (1977), 185–213 | DOI | MR | Zbl | Zbl
[12] B. A. Dubrovin, “Theta functions and non-linear equations”, Russian Math. Surveys, 36:2 (1981), 11–92 | DOI | MR | Zbl | Zbl
[13] M. Sato, Y. Mori, “On Hirota's bilinear equations. I”, RIMS Kôkyûroku, 388 (1980), 183
[14] M. Sato, Y. Sato, “On Hirota's bilinear equations. II”, RIMS Kôkyûroku, 414 (1981), 181
[15] M. Sato, Y. Sato, “Soliton equations as dynamical systems on infinite-dimensional Grassmann manifold”, Nonlinear partial differential equations in applied science (Tokyo, 1982), North-Holland Math. Stud., 81, North-Holland, Amsterdam, 1983, 259–271 | MR | Zbl
[16] E. Date, M. Jimbo, M. Kashiwara, T. Miwa, “Transformation groups for soliton equations”, Nonlinear integrable systems – classical theory and quantum theory (Kyoto, 1981), eds. M. Jimbo and T. Miwa, World Sci. Publ., Singapore, 1983, 39–119 | MR | Zbl
[17] G. Segal, G. Wilson, “Loop groups and equations of KdV type”, Inst. Hautes Études Sci. Publ. Math., 1985, no. 61, 5–65 | MR | Zbl
[18] I. G. Macdonald, Symmetric functions and Hall polynomials, Oxford Math. Monogr., The Clarendon Press, New York, 1995, x+475 pp. | MR | Zbl
[19] B. E. Sagan, The symmetric group. Representations, combinatorial algorithms, and symmetric functions, Grad. Texts in Math., 203, 2nd ed., Springer, New York, 2001, xvi+238 pp. | MR | Zbl
[20] H. F. Baker, An introduction to the theory of multiply-periodic functions, Cambridge Univ. Press, Cambridge, 1907, 336 pp. | Zbl
[21] J. D. Fay, Theta functions on Riemann surfaces, Lecture Notes in Math., 352, Springer-Verlag, Berlin–New York, 1973, iv+137 pp. | DOI | MR | Zbl
[22] D. Mumford, Tata lectures on theta. I: Introduction and motivation: Theta functions in one variable. Basic results on theta functions in several variables, Progr. Math., 28, Birkhäuser, Boston, MA, 1983, xiii+235 pp. ; II: Jacobian theta functions and differential equations, Progr. Math., 43, Birkhäuser, Boston, 1984, xiv+272 pp. | MR | Zbl | MR | Zbl
[23] H. F. Baker, Abelian functions. Abel's theorem and the allied theory of theta functions, 1897; Reprinted in 1995: Cambridge Math. Lib., Cambridge Univ. Press, Cambridge, xxxvi+684 pp. | MR | Zbl
[24] V. M. Buchstaber, V. Z. Enolskii, D. V. Leykin, “Kleinian functions, hyperelliptic Jacobians and applications”, Rev. Math. Math. Phys., 10:2 (1997), 3–120 | Zbl
[25] A. Nakayashiki, “On hyperelliptic Abelian functions of genus $3$”, J. Geom. Phys., 61:6 (2011), 961–985, arXiv: 0809.3303 | DOI | MR | Zbl
[26] K. Weierstrass, Formeln und Lehrsätze zum Gebrauche der elliptischen Functionen, Springer, Berlin, 1893 | Zbl
[27] V. M. Buchstaber, D. V. Leykin, “Addition laws on Jacobians of plane algebraic curves”, Proc. Steklov Inst. Math., 251 (2005), 49–120 | MR | Zbl
[28] V. M. Buchstaber, D. V. Leykin, “Solution of the problem of the differentiation of Abelian functions with respect to parameters for families of $(n,s)$-curves”, Funct. Anal. Appl., 42:4 (2008), 268–278 | DOI | MR | Zbl
[29] J. D. Fay, Bilinear identities for theta functions, Mathematics Report No 83-168, University of Minnesota, 1983
[30] J. Fay, “Schottky relations on $\frac12(C-C)$”, Theta functions – Bowdoin 1987, Part 1 (Brunswick, ME, 1987), Proc. Sympos. Pure Math., 49, no. 1, Amer. Math. Soc., Providence, RI, 1989, 485–501 | MR | Zbl
[31] A. Nakayashiki, “Sigma function as a tau function”, Int. Math. Res. Not. IMRN, 2010, no. 3, 373–394, 22 pp. ; arXiv: 0904.0846 | DOI | MR | Zbl
[32] V. M. Bukhshtaber, S. Y. Shorina, “Commuting multidimensional third-order differential operators defining a KdV hierarchy”, Russian Math. Surveys, 58:3 (2003), 610–612 | DOI | MR | Zbl
[33] V. M. Bukhshtaber, S. Y. Shorina, “The $w$-function of a solution the $g$th stationary KdV equation”, Russian Math. Surveys, 58:4 (2003), 780–781 | DOI | MR | Zbl
[34] V. M. Buchstaber, S. Yu. Shorina, “The $w$-function of the KdV hierarchy”, Geometry, topology, and mathematical physics, Amer. Math. Soc. Transl. Ser. 2, 212, eds. V. M. Buchstaber, I. M. Krichever, Amer. Math. Soc., Providence, RI, 2004, 41–46 | MR | Zbl
[35] L. A. Dickey, Soliton equations and Hamiltonian systems, Adv. Ser. Math. Phys., 26, World Sci. Publ., River Edge, NJ, 2003, xii+408 pp. | MR | Zbl
[36] I. M. Krichever, “The Laplace method, algebraic curves, and nonlinear equations”, Funct. Anal. Appl., 18:3 (1984), 210–223 | DOI | MR | Zbl
[37] I. M. Krichever, S. P. Novikov, “Algebras of Virasoro type, Riemann surfaces and structures of the theory of solitons”, Funct. Anal. Appl., 21:2 (1987), 126–142 | DOI | MR | Zbl
[38] P. G. Grinevich, A. Yu. Orlov, “Virasoro action on Riemann surfaces, Grassmannians, $\det\overline\partial_J$ and Segal–Wilson $\tau$-function”, Problems of modern quantum field theory (Alushta, 1989), Res. Rep. Phys., Springer, Berlin, 1989, 86–106 | MR
[39] H. M. Farkas, I. Kra, Riemann surfaces, Grad. Texts in Math., 71, Springer, New York–Berlin, 1980, xi+337 pp. | DOI | MR | Zbl
[40] F. Klein, “Über hyperelliptische Sigmafunctionen”, Math. Ann., 27:3 (1886), 431–464 | DOI | MR | Zbl
[41] F. Klein, “Über hyperelliptische Sigmafunctionen (Zweite Abhandlung)”, Math. Ann., 32:3 (1888), 351–380 | DOI | MR | Zbl
[42] J. C. Eilbeck, V. Z. Enolskii, D. V. Leykin, “On the Kleinian construction of Abelian functions of canonical algebraic curves”, SIDE III-symmetries and integrability of difference equations (Sabaudia, 1998), CRM Proc. Lecture Notes, 25, 2000, 121–138 | MR | Zbl
[43] V. M. Buchstaber, V. Z. Enolskii, D. V. Leykin, “Uniformization of Jacobi varieties of trigonal curves and nonlinear differential equations”, Funct. Anal. Appl., 34:3 (2000), 159–171 | DOI | MR | Zbl
[44] H. F. Baker, “On the hyperelliptic sigma functions”, Amer. J. Math., 20:4 (1898), 301–384 | DOI | MR | Zbl
[45] J. Igusa, “Problems on Abelian functions at the time of Poincaré and some at present”, Bull. Amer. Math. Soc. (N. S.), 6:2 (1982), 161–174 | DOI | MR | Zbl
[46] J. C. Eilbeck, V. Z. Enolski, J. Gibbons, “Sigma, tau and Abelian functions of algebraic curves”, J. Phys. A, 43:45 (2010), 455216, 20 pp. ; arXiv: 1006.5219 | DOI | MR | Zbl
[47] A. Nakayashiki, “On algebraic expression of sigma functions of $(n,s)$ curves”, Asian J. Math., 14:2 (2010), 175–211 ; arXiv: 0803.2083 | MR | Zbl
[48] H. F. Baker, “On a system of differential equations leading to periodic functions”, Acta Math., 27:1 (1903), 135–156 | DOI | MR | Zbl
[49] Ch. Athorne, “Identities for hyperelliptic $\wp$-functions of genus one, two and three in covariant form”, J. Phys. A, 41:41 (2008), 415202, 20 pp. | DOI | MR | Zbl
[50] J. C. Eilbeck, V. Z. Enolski, S. Matsutani, Y. Ônishi, E. Previato, “Abelian functions for trigonal curve of genus three”, Int. Math. Res. Not. IMRN, 2008, no. 1, rnm 140, 38 pp. | DOI | MR | Zbl
[51] S. Matsutani, E. Previato, “Jacobi inversion on strata of the Jacobian of the $C_{rs}$ curve $y^r=f(x)$”, J. Math. Soc. Japan, 60:4 (2008), 1009–1044 ; http://www.mittag-leffler.se/preprints/0607/files/IML-0607-41.pdf | DOI | MR | Zbl
[52] M. England, J. C. Eilbeck, “Abelian functions associated with a cyclic tetragonal curve of genus six”, J. Phys. A, 42:9 (2009), 095210, 27 pp. | DOI | MR | Zbl
[53] S. Matsutani, E. Previato, Jacobi inversion on strata of the Jacobian of the $C_{rs}$ curve $y^r = f(x)$, arXiv: 1006.1090