Schur function expansions of KP $\tau$-functions associated to algebraic curves
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 66 (2011) no. 4, pp. 767-807

Voir la notice de l'article provenant de la source Math-Net.Ru

The Schur function expansion of Sato–Segal–Wilson KP $\tau$-functions is reviewed. The case of $\tau$-functions related to algebraic curves of arbitrary genus is studied in detail. Explicit expressions for the Plücker coordinate coefficients appearing in the expansion are obtained in terms of directional derivatives of the Riemann $\theta$-function or Klein $\sigma$-function along the KP flow directions. By using the fundamental bi-differential it is shown how the coefficients can be expressed as polynomials in terms of Klein's higher-genus generalizations of Weierstrass' $\zeta$- and $\wp$-functions. The cases of genus-two hyperelliptic and genus-three trigonal curves are detailed as illustrations of the approach developed here. Bibliography: 53 titles.
Keywords: $\tau$-functions, $\sigma$-functions, $\theta$-functions, Schur functions, algebro-geometric solutions to soliton equations.
Mots-clés : KP equation
@article{RM_2011_66_4_a2,
     author = {J. Harnad and V. Z. Enolski},
     title = {Schur function expansions of {KP} $\tau$-functions associated to algebraic curves},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {767--807},
     publisher = {mathdoc},
     volume = {66},
     number = {4},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2011_66_4_a2/}
}
TY  - JOUR
AU  - J. Harnad
AU  - V. Z. Enolski
TI  - Schur function expansions of KP $\tau$-functions associated to algebraic curves
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2011
SP  - 767
EP  - 807
VL  - 66
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RM_2011_66_4_a2/
LA  - en
ID  - RM_2011_66_4_a2
ER  - 
%0 Journal Article
%A J. Harnad
%A V. Z. Enolski
%T Schur function expansions of KP $\tau$-functions associated to algebraic curves
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2011
%P 767-807
%V 66
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RM_2011_66_4_a2/
%G en
%F RM_2011_66_4_a2
J. Harnad; V. Z. Enolski. Schur function expansions of KP $\tau$-functions associated to algebraic curves. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 66 (2011) no. 4, pp. 767-807. http://geodesic.mathdoc.fr/item/RM_2011_66_4_a2/