Mots-clés : Legendre transform
@article{RM_2011_66_4_a1,
author = {M. I. Zelikin},
title = {Theory of fields of extremals for multiple integrals},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {733--765},
year = {2011},
volume = {66},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2011_66_4_a1/}
}
M. I. Zelikin. Theory of fields of extremals for multiple integrals. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 66 (2011) no. 4, pp. 733-765. http://geodesic.mathdoc.fr/item/RM_2011_66_4_a1/
[1] A. T. Fomenko, Variational principles of topology. Multidimensional minimal surface theory, Mathematics and its Applications (Soviet Series), 42, Kluwer Academic Publishers Group, Dordrecht, 1990, xviii+374 pp. | MR | MR | Zbl | Zbl
[2] A. Clebsch, “Über die zweite Variation vielfacher Integrale”, J. Reine Angew. Math., 1859, no. 56, 122–148 | DOI | Zbl
[3] J. Hadamard, “Sur quelques questions de calcul des variations”, Bull. Soc. Math. France, 33 (1905), 73–80 | MR | Zbl
[4] F. J. Terpstra, “Die Darstellung biquadratischer Formen als Summen von Quadraten mit Anwendung auf die Variationsrechnung”, Math Ann., 116:1 (1938), 166–180 | DOI | MR | Zbl
[5] D. Serre, “Condition de Legendre–Hadamard: espaces de matrices des rang $\ne 1$”, C. R. Acad. Sci. Paris Sér. I Math., 293 (1981), 23–26 | MR | Zbl
[6] D. Serre, “Formes quadratiques et calcul des variations”, J. Math. Pures Appl. (9), 62:2 (1983), 177–196 | MR | Zbl
[7] C. B. Morrey, Multiple integrals in the calculus of variations, Grundlehren Math. Wiss., 130, Springer-Verlag, New York, 1966, 506 pp. | DOI | MR | Zbl
[8] J. M. Ball, F. Murat, “$W^{1,p}$-quasiconvexity and variational problems for multiple integrals”, J. Funct. Anal., 58:3 (1984), 225–253 | DOI | MR | Zbl
[9] E. Giusti, “Direct methods in the calculus of variations”, Frontiers in physics, high technology and mathematics (Trieste, 1989), World Sci. Publ., River Edge, NJ, 1990, 130–147 | MR
[10] E. Silverman, “A sufficient condition for the lower semicontinuity of parametric integrals”, Trans. Amer. Math. Soc., 167 (1972), 465–469 | DOI | MR | Zbl
[11] J. M. Ball, “Remarks on the paper ‘Basic calculus of variations’ ”, Pacific J. Math., 116:1 (1985), 7–10 ; http://projecteuclid.org/euclid.pjm/1102707243 | MR | Zbl
[12] L. van Hove, “Sur l'extension de la condition de Legendre du calcul des variations aux intégrales multiples à plusiers fonctions inconnues”, Proc. Akad. Wet. Amsterdam, 50 (1947), 18–23 | MR | Zbl
[13] R. Dennemeyer, “Conjugate surfaces for multiple integral problems in the calculus of variations”, Pacific J. Math., 30:3 (1969), 621–638 ; http://projecteuclid.org/euclid.pjm/1102978247 | MR | Zbl
[14] Dzh. Saimons, “Minimalnye poverkhnosti v rimanovykh mnogoobraziyakh”, Matematika, 16:6 (1972), 60–104 ; J. Simons, “Minimal varieties in Riemannian manifolds”, Ann. Math. (2), 88:1 (1968), 62–105 | Zbl | DOI | MR | Zbl
[15] S. Smale, “On the Morse index theorem”, J. Math. Mech., 14:6 (1965), 1049–1055 | DOI | MR | Zbl
[16] R. C. Swanson, “Fredholm intersection theory and elliptic boundary deformation problems. I”, J. Differential Equations, 28:2 (1978), 189–201 | DOI | MR | Zbl
[17] K. Uhlenbeck, “The Morse index theorem in Hilbert space”, J. Differential Geom., 8:4 (1973), 555–564 ; http://projecteuclid.org/euclid.jdg/1214431958 | MR | Zbl
[18] M. Giaquinta, S. Hildebrandt, Calculus of variations. I, Grundlehren Math. Wiss., 310, Springer-Verlag, Berlin, 1996, xxx+474 pp. | MR | Zbl
[19] P. Funk, Variationsrechnung und ihre Anwendungen in Physik und Technik, Grundlehren Math. Wiss., 94, Springer-Verlag, Berlin–Göttingen–Heidelberg, 1962, 676 pp. | MR | Zbl
[20] C. Carathéodory, “Über die Variationsrechnung bei mehrfachen Integralen”, Acta Szeged, 4 (1929), 193–216 | Zbl
[21] H. Weyl, “Geodesic fields in the calculus of variation for multiple integrals”, Ann. of Math. (2), 36:3 (1935), 607–629 | DOI | MR | Zbl
[22] Th. De Donder, Théorie invariantive du calcul des variations, Gauthier-Villars, Paris, 1935, 230 pp. | Zbl
[23] T. Lepage, “Sur les champs géodésiques des intégrales multiples”, Acad. Roy. Belgique. Bull. Cl. Sci. (5), 27 (1941), 27–46 | MR | Zbl
[24] H. Börner, “Über die Legendresche Bedingung und die Feldtheorien in der Variationsrechnung der mehrfachen Integrale”, Math. Z., 46 (1940), 720–742 | DOI | MR | Zbl
[25] J. W. Milnor, J. D. Stasheff, Characteristic classes, Ann. Math. Stud., 76, Princeton Univ. Press, Princeton, NJ; Univ. of Tokyo Press, Tokyo, 1974, vii+331 pp. | MR | MR | Zbl | Zbl
[26] B. A. Dubrovin, S. P. Novikov, A. T. Fomenko, Sovremennaya geometriya, Nauka, M., 1979, 760 pp. ; B. A. Dubrovin, A. T. Fomenko, S. P. Novikov, Modern geometry. Methods and applications. Part I, Grad. Texts in Math., 93, Springer-Verlag, New York, 1984, 464 pp. ; Modern geometry. Methods and applications. Part II. The geometry and topology of manifolds, Grad. Texts in Math., 104, Springer-Verlag, New York, 1985, 430 pp. | MR | Zbl | MR | Zbl | MR | Zbl
[27] A. D. Ioffe, V. M. Tihomirov, Theory of extremal problems, Stud. Math. Appl., 6, North-Holland, Amsterdam–New York, 1979, 460 pp. | MR | MR | Zbl | Zbl
[28] M. I. Zelikin, Control theory and optimization. I. Homogeneous spaces and the Riccati equation in the calculus of variations, Encyclopaedia Math. Sci., 86, Springer-Verlag, Berlin, 2000, xii+284 pp. | MR | Zbl
[29] M. I. Zelikin, Odnorodnye prostranstva i uravnenie Rikkati v variatsionnom ischislenii, Faktorial, M., 1998, 351 pp. | Zbl
[30] M. I. Zelikin, “Hessian of the solution of the Hamilton–Jacobi equation in the theory of extremal problems”, Sb. Math., 195:6 (2004), 819–831 | DOI | MR | Zbl
[31] Sh. Kobayasi, K. Nomidzu, Osnovy differentsialnoi geometrii, I, Nauka, M., 1981, 344 pp. ; Sh. Kobayashi, K. Nomizu, Foundations of differential geometry, I, Interscience Publishers, New York–London, 1963, 329 pp. ; II, Наука, Рњ., 1981, 415 СЃ. ; Interscience Tracts in Pure and Applied Mathematics, II, Interscience Publishers, New York–London–Sydney, 1969, 470 pp. | Zbl | MR | Zbl | Zbl | MR | Zbl
[32] P. K. Rashevskii, Rimanova geometriya i tenzornyi analiz, 3-e izd., Nauka, M., 1967, 664 pp. | MR | Zbl
[33] J. Milnor, “On manifolds homeomorphic to the 7-sphere”, Ann. of Math. (2), 64:2 (1956), 399–405 | DOI | MR | Zbl