Theory of fields of extremals for multiple integrals
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 66 (2011) no. 4, pp. 733-765 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A general theory unifying and generalizing the field theories for multiple integrals due to Weyl and Carathéodory is developed. Generalizations of the Legendre, Weyl, and Carathéodory transforms are introduced, as well as the associated connection and curvature on the fibre bundle underlying the multiple integrals. Bibliography: 33 titles.
Keywords: field of extremals, Weierstrass function, connection and curvature on fibre bundles, covariant differentiation.
Mots-clés : Legendre transform
@article{RM_2011_66_4_a1,
     author = {M. I. Zelikin},
     title = {Theory of fields of extremals for multiple integrals},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {733--765},
     year = {2011},
     volume = {66},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2011_66_4_a1/}
}
TY  - JOUR
AU  - M. I. Zelikin
TI  - Theory of fields of extremals for multiple integrals
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2011
SP  - 733
EP  - 765
VL  - 66
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/RM_2011_66_4_a1/
LA  - en
ID  - RM_2011_66_4_a1
ER  - 
%0 Journal Article
%A M. I. Zelikin
%T Theory of fields of extremals for multiple integrals
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2011
%P 733-765
%V 66
%N 4
%U http://geodesic.mathdoc.fr/item/RM_2011_66_4_a1/
%G en
%F RM_2011_66_4_a1
M. I. Zelikin. Theory of fields of extremals for multiple integrals. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 66 (2011) no. 4, pp. 733-765. http://geodesic.mathdoc.fr/item/RM_2011_66_4_a1/

[1] A. T. Fomenko, Variational principles of topology. Multidimensional minimal surface theory, Mathematics and its Applications (Soviet Series), 42, Kluwer Academic Publishers Group, Dordrecht, 1990, xviii+374 pp. | MR | MR | Zbl | Zbl

[2] A. Clebsch, “Über die zweite Variation vielfacher Integrale”, J. Reine Angew. Math., 1859, no. 56, 122–148 | DOI | Zbl

[3] J. Hadamard, “Sur quelques questions de calcul des variations”, Bull. Soc. Math. France, 33 (1905), 73–80 | MR | Zbl

[4] F. J. Terpstra, “Die Darstellung biquadratischer Formen als Summen von Quadraten mit Anwendung auf die Variationsrechnung”, Math Ann., 116:1 (1938), 166–180 | DOI | MR | Zbl

[5] D. Serre, “Condition de Legendre–Hadamard: espaces de matrices des rang $\ne 1$”, C. R. Acad. Sci. Paris Sér. I Math., 293 (1981), 23–26 | MR | Zbl

[6] D. Serre, “Formes quadratiques et calcul des variations”, J. Math. Pures Appl. (9), 62:2 (1983), 177–196 | MR | Zbl

[7] C. B. Morrey, Multiple integrals in the calculus of variations, Grundlehren Math. Wiss., 130, Springer-Verlag, New York, 1966, 506 pp. | DOI | MR | Zbl

[8] J. M. Ball, F. Murat, “$W^{1,p}$-quasiconvexity and variational problems for multiple integrals”, J. Funct. Anal., 58:3 (1984), 225–253 | DOI | MR | Zbl

[9] E. Giusti, “Direct methods in the calculus of variations”, Frontiers in physics, high technology and mathematics (Trieste, 1989), World Sci. Publ., River Edge, NJ, 1990, 130–147 | MR

[10] E. Silverman, “A sufficient condition for the lower semicontinuity of parametric integrals”, Trans. Amer. Math. Soc., 167 (1972), 465–469 | DOI | MR | Zbl

[11] J. M. Ball, “Remarks on the paper ‘Basic calculus of variations’ ”, Pacific J. Math., 116:1 (1985), 7–10 ; http://projecteuclid.org/euclid.pjm/1102707243 | MR | Zbl

[12] L. van Hove, “Sur l'extension de la condition de Legendre du calcul des variations aux intégrales multiples à plusiers fonctions inconnues”, Proc. Akad. Wet. Amsterdam, 50 (1947), 18–23 | MR | Zbl

[13] R. Dennemeyer, “Conjugate surfaces for multiple integral problems in the calculus of variations”, Pacific J. Math., 30:3 (1969), 621–638 ; http://projecteuclid.org/euclid.pjm/1102978247 | MR | Zbl

[14] Dzh. Saimons, “Minimalnye poverkhnosti v rimanovykh mnogoobraziyakh”, Matematika, 16:6 (1972), 60–104 ; J. Simons, “Minimal varieties in Riemannian manifolds”, Ann. Math. (2), 88:1 (1968), 62–105 | Zbl | DOI | MR | Zbl

[15] S. Smale, “On the Morse index theorem”, J. Math. Mech., 14:6 (1965), 1049–1055 | DOI | MR | Zbl

[16] R. C. Swanson, “Fredholm intersection theory and elliptic boundary deformation problems. I”, J. Differential Equations, 28:2 (1978), 189–201 | DOI | MR | Zbl

[17] K. Uhlenbeck, “The Morse index theorem in Hilbert space”, J. Differential Geom., 8:4 (1973), 555–564 ; http://projecteuclid.org/euclid.jdg/1214431958 | MR | Zbl

[18] M. Giaquinta, S. Hildebrandt, Calculus of variations. I, Grundlehren Math. Wiss., 310, Springer-Verlag, Berlin, 1996, xxx+474 pp. | MR | Zbl

[19] P. Funk, Variationsrechnung und ihre Anwendungen in Physik und Technik, Grundlehren Math. Wiss., 94, Springer-Verlag, Berlin–Göttingen–Heidelberg, 1962, 676 pp. | MR | Zbl

[20] C. Carathéodory, “Über die Variationsrechnung bei mehrfachen Integralen”, Acta Szeged, 4 (1929), 193–216 | Zbl

[21] H. Weyl, “Geodesic fields in the calculus of variation for multiple integrals”, Ann. of Math. (2), 36:3 (1935), 607–629 | DOI | MR | Zbl

[22] Th. De Donder, Théorie invariantive du calcul des variations, Gauthier-Villars, Paris, 1935, 230 pp. | Zbl

[23] T. Lepage, “Sur les champs géodésiques des intégrales multiples”, Acad. Roy. Belgique. Bull. Cl. Sci. (5), 27 (1941), 27–46 | MR | Zbl

[24] H. Börner, “Über die Legendresche Bedingung und die Feldtheorien in der Variationsrechnung der mehrfachen Integrale”, Math. Z., 46 (1940), 720–742 | DOI | MR | Zbl

[25] J. W. Milnor, J. D. Stasheff, Characteristic classes, Ann. Math. Stud., 76, Princeton Univ. Press, Princeton, NJ; Univ. of Tokyo Press, Tokyo, 1974, vii+331 pp. | MR | MR | Zbl | Zbl

[26] B. A. Dubrovin, S. P. Novikov, A. T. Fomenko, Sovremennaya geometriya, Nauka, M., 1979, 760 pp. ; B. A. Dubrovin, A. T. Fomenko, S. P. Novikov, Modern geometry. Methods and applications. Part I, Grad. Texts in Math., 93, Springer-Verlag, New York, 1984, 464 pp. ; Modern geometry. Methods and applications. Part II. The geometry and topology of manifolds, Grad. Texts in Math., 104, Springer-Verlag, New York, 1985, 430 pp. | MR | Zbl | MR | Zbl | MR | Zbl

[27] A. D. Ioffe, V. M. Tihomirov, Theory of extremal problems, Stud. Math. Appl., 6, North-Holland, Amsterdam–New York, 1979, 460 pp. | MR | MR | Zbl | Zbl

[28] M. I. Zelikin, Control theory and optimization. I. Homogeneous spaces and the Riccati equation in the calculus of variations, Encyclopaedia Math. Sci., 86, Springer-Verlag, Berlin, 2000, xii+284 pp. | MR | Zbl

[29] M. I. Zelikin, Odnorodnye prostranstva i uravnenie Rikkati v variatsionnom ischislenii, Faktorial, M., 1998, 351 pp. | Zbl

[30] M. I. Zelikin, “Hessian of the solution of the Hamilton–Jacobi equation in the theory of extremal problems”, Sb. Math., 195:6 (2004), 819–831 | DOI | MR | Zbl

[31] Sh. Kobayasi, K. Nomidzu, Osnovy differentsialnoi geometrii, I, Nauka, M., 1981, 344 pp. ; Sh. Kobayashi, K. Nomizu, Foundations of differential geometry, I, Interscience Publishers, New York–London, 1963, 329 pp. ; II, Наука, Рњ., 1981, 415 СЃ. ; Interscience Tracts in Pure and Applied Mathematics, II, Interscience Publishers, New York–London–Sydney, 1969, 470 pp. | Zbl | MR | Zbl | Zbl | MR | Zbl

[32] P. K. Rashevskii, Rimanova geometriya i tenzornyi analiz, 3-e izd., Nauka, M., 1967, 664 pp. | MR | Zbl

[33] J. Milnor, “On manifolds homeomorphic to the 7-sphere”, Ann. of Math. (2), 64:2 (1956), 399–405 | DOI | MR | Zbl