@article{RM_2011_66_4_a0,
author = {M. I. Vishik and V. V. Chepyzhov},
title = {Trajectory attractors of equations of mathematical physics},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {637--731},
year = {2011},
volume = {66},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2011_66_4_a0/}
}
TY - JOUR AU - M. I. Vishik AU - V. V. Chepyzhov TI - Trajectory attractors of equations of mathematical physics JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2011 SP - 637 EP - 731 VL - 66 IS - 4 UR - http://geodesic.mathdoc.fr/item/RM_2011_66_4_a0/ LA - en ID - RM_2011_66_4_a0 ER -
M. I. Vishik; V. V. Chepyzhov. Trajectory attractors of equations of mathematical physics. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 66 (2011) no. 4, pp. 637-731. http://geodesic.mathdoc.fr/item/RM_2011_66_4_a0/
[1] A. V. Babin, M. I. Vishik, Attractors of evolution equations, Stud. Math. Appl., 25, North-Holland, Amsterdam, 1992 | MR | MR | Zbl | Zbl
[2] R. Temam, Infinite-dimensional dynamical systems in mechanics and physics, Appl. Math. Sci., 68, Springer-Verlag, New York, 1988 | MR | Zbl
[3] O. A. Ladyzhenskaya, Attractors for semigroups and evolution equations, Lezioni Lincee, Cambridge Univ. Press, Cambridge, New York, 1991, xii+73 pp. | MR | Zbl
[4] J. K. Hale, Asymptotic behavior of dissipative systems, Math. Surveys Monogr., 25, Amer. Math. Soc., Providence, RI, 1988 | MR | Zbl
[5] I. D. Chueshov, Introduction to the theory of infinite-dimensional dissipative systems, University Lectures in Contemporary Mathematics, Acta, Kharkiv, 2002, 418 pp. | MR | Zbl | Zbl
[6] G. R. Sell, Y. You, Dynamics of evolutionary equations, Appl. Math. Sci., 143, Springer-Verlag, New York, 2002 | MR | Zbl
[7] V. V. Chepyzhov, M. I. Vishik, “Trajectory attractors for evolution equations”, C. R. Acad. Sci. Paris Sér. I Math., 321:10 (1995), 1309–1314 | MR | Zbl
[8] V. V. Chepyzhov, M. I. Vishik, “An attractor of a non-autonomous Navier–Stokes system in three-dimensional space”, Russian Math. Surveys, 50:4 (1995), 807 | DOI
[9] V. V. Chepyzhov, M. I. Vishik, “Trajectory attractors for 2D Navier–Stokes systems and some generalizations”, Topol. Methods Nonlinear Anal., 8:2 (1996), 217–243 | MR | Zbl
[10] M. I. Vishik, V. V. Chepyzhov, “Trajectory attractors of evolution equations without unique solvability of the Cauchy problem”, Moscow Univ. Math. Bull., 51:6 (1997), 16–18 | MR | Zbl | Zbl
[11] V. V. Chepyzhov, M. I. Vishik, “Evolution equations and their trajectory attractors”, J. Math. Pures Appl. (9), 76:10 (1997), 913–964 | DOI | MR | Zbl
[12] V. V. Chepyzhov, M. I. Vishik, Attractors for equations of mathematical physics, Amer. Math. Soc. Colloq. Publ., 49, Amer. Math. Soc., Providence, RI, 2002 | MR | Zbl
[13] G. R. Sell, “Global attractors for the three-dimensional Navier–Stokes equations”, J. Dynam. Differential Equations, 8:1 (1996), 1–33 | DOI | MR | Zbl
[14] O. A. Ladyzhenskaya, “A dynamical system generated by the Navier–Stokes equations”, J. Sov. Math., 3:4 (1975), 458–479 | DOI | MR | Zbl | Zbl
[15] O. A. Ladyzhenskaya, “Finite-dimensionality of bounded invariant sets for Navier–Stokes systems and other dissipative systems”, J. Sov. Math., 28:5 (1985), 714–726 | DOI | MR | Zbl | Zbl
[16] I. D. Chueshov, “Global attractors for non-linear problems of mathematical physics”, Russian Math. Surveys, 48:3 (1993), 133–161 | DOI | MR | Zbl
[17] A. V. Babin, “Global attractors in PDE”, v. 1B, Handbook of dynamical systems, Elsevier B. V., Amsterdam, 2006, 983–1085 | MR | Zbl
[18] G. Raugel, “Global attractors in partial differential equations”, v. 2, Handbook of dynamical systems, ed. B. Fiedler, North-Holland, Amsterdam, 2002, 885–982 | MR | Zbl
[19] A. Miranville, S. Zelik, “Attractors for dissipative partial differential equations in bounded and unbounded domains”, v. 4, Handbook of differential equations: evolutionary equations, North-Holland, Amsterdam, 2008, 103–200 | MR | Zbl
[20] J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Graytier-Villars, Paris, 1969 | MR | MR | Zbl | Zbl
[21] J. Smoller, Shock waves and reaction-diffusion equations, Grundlehren Math. Wiss., 258, Springer-Verlag, New York–Berlin, 1983, xxi+581 pp. | MR | Zbl
[22] V. K. Vanag, Dissipativnye struktury v reaktsionno-diffuzionnykh sistemakh, IKI, M.–Izhevsk, 2008
[23] J. C. Robinson, Infinite-dimensional dynamical systems, An introduction to dissipative parabolic PDEs and the theory of global attractors, Cambridge Texts Appl. Math., Cambridge Univ. Press, Cambridge, 2001 | MR | Zbl
[24] A. V. Babin, “Attractors of Navier–Stokes equations”, v. II, Handbook of mathematical fluid dynamics, North-Holland, Amsterdam, 2003, 169–222 | MR | Zbl
[25] O. A. Ladyzhenskaya, Matematicheskie voprosy dinamiki vyazkoi neszhimaemoi zhidkosti, Fizmatgiz, M., 1961; 2-Рμ РёР·Рґ., Наука, Рњ., 1970 ; O. A. Ladyzhenskaya, The mathematical theory of viscous incompressible flow, Gordon and Breach, New York–London, 1963 | MR | Zbl | MR | Zbl
[26] R. Temam, Navier–Stokes equations, Stud. Math. Appl., 2, North-Holland, Amsterdam–New York–Oxford, 1979 | MR | MR | Zbl | Zbl
[27] P. Constantin, C. Foias, Navier–Stokes equations, Chicago Lectures in Math., Chicago Univ. Press, Chicago, IL, 1988 | MR | Zbl
[28] A. Haraux, “Two remarks on dissipative hyperbolic problems”, Nonlinear partial differential equations and their applications. Collège de France seminar (Paris, 1983–1984), v. 7, Res. Notes in Math., 112, eds. H. Brezis, J.-L. Lions, Pitman, Boston, MA, 1985, 161–179 | MR | Zbl
[29] J. M. Ghidaglia, R. Temam, “Attractors for damped nonlinear hyperbolic equations”, J. Math. Pures Appl. (9), 66:3 (1987), 273–319 | MR | Zbl
[30] O. A. Ladyzhenskaya, “On the determination of minimal global attractors for the Navier–Stokes and other partial differential equations”, Russian Math. Surveys, 42:6 (1987), 27–73 | DOI | MR | Zbl
[31] J. Arrieta, A. N. Carvalho, J. K. Hale, “A damped hyperbolic equation with critical exponent”, Comm. Partial Differential Equations, 17:5–6 (1992), 841–866 | DOI | MR | Zbl
[32] E. Feireisl, “Attractors for wave equations with nonlinear dissipation and critical exponent”, C. R. Acad. Sci. Paris Sér. I Math., 315:5 (1992), 551–555 | MR | Zbl
[33] M. Grasselli, V. Pata, “On the damped semilinear wave equation with critical exponent”, Dynamical systems and differential equations (Wilmington, NC, 2002), Discrete Contin. Dyn. Syst., suppl., 2003, 351–358 | MR | Zbl
[34] V. Pata, S. Zelik, “A remark on the weakly damped wave equation”, Commun. Pure Appl. Anal., 5:3 (2006), 611–616 | DOI | MR | Zbl
[35] N. Kopell, L. N. Howard, “Plane wave solutions to reaction-diffusion equations”, Stud. Appl. Math., 52 (1973), 291–328 | MR | Zbl
[36] Y. Kuramoto, T. Tsuzuki, “On the formation of dissipative structures in reaction-diffusion systems. Reduction perturbation approach”, Progr. Theoret. Phys., 54:3 (1975), 687–699 | DOI
[37] A. Mielke, “The Ginzburg–Landau equation in its role as a modulation equation”, Handbook of dynamical systems, 2, North-Holland, Amsterdam, 2002, 759–834 | DOI | MR | Zbl
[38] A. Mielke, “Bounds for the solutions of the complex Ginzburg–Landau equation in terms of the dispersion parameters”, Phys. D, 117:1–4 (1998), 106–116 | DOI | MR | Zbl
[39] S. V. Zelik, “The attractor for a nonlinear reaction-diffusion system with a supercritical nonlinearity and its dimension”, Rend. Accad. Naz. Sci. XL Mem. Mat. Appl. (5), 24 (2000), 1–25 | MR
[40] C. R. Doering, J. D. Gibbon, C. D. Levermore, “Weak and strong solutions of the complex Ginzburg–Landau equation”, Phys. D, 71:3 (1994), 285–318 | DOI | MR | Zbl
[41] J. M.Ghidaglia, B. Héron, “Dimension of the attractors associated to the Ginzburg–Landau partial differential equation”, Phys. D, 28:3 (1987), 282–304 | DOI | MR | Zbl
[42] C. R. Doering, J. D. Gibbon, D. D. Holm, B. Nicolaenko, “Low-dimensional behaviour in the complex Ginzburg–Landau equation”, Nonlinearity, 1:2 (1988), 279–309 | DOI | MR | Zbl
[43] A. Mielke, “The complex Ginzburg–Landau equation on large and unbounded domains: sharper bounds and attractors”, Nonlinearity, 10 (1997), 199–222 | DOI | MR | Zbl
[44] M. I. Vishik, V. V. Chepyzhov, “Non-autonomous Ginzburg–Landau equation and its attractors”, Sb. Math., 196:6 (2005), 791–815 | DOI | MR | Zbl
[45] V. V. Chepyzhov, M. I. Vishik, “Trajectory attractors for reaction-diffusion systems”, Topol. Methods Nonlinear Anal., 7:1 (1996), 49–76 ; http://www-users.mat.uni.torun.pl/t̃mna/files/v07n1-02.pdf | MR | Zbl
[46] Ph. Hartman, Ordinary differential equations, Wiley, New York–London–Sydney, 1964, xiv+612 pp. | MR | MR | Zbl | Zbl
[47] J.-L. Lions, E. Magenes, Problèmes aux limites non homogènes et applications, v. 1, Dunod, Paris, 1968 | MR | MR | Zbl | Zbl
[48] P. S. Aleksandrov, A. N. Kolmogorov, Vvedenie v teoriyu mnozhestv i teoriyu funktsii. Ch. 1. Vvedenie v obschuyu teoriyu mnozhestv i funktsii, Gostekhizdat, M., 1948 | MR | Zbl
[49] J.-P. Aubin, “Un théorème de compacité”, C. R. Acad. Sci. Paris, 256 (1963), 5042–5044 | MR | Zbl
[50] Yu. A. Dubinskii, “Slabaya skhodimost v nelineinykh ellipticheskikh i parabolicheskikh uravneniyakh”, Matem. sb., 67(109):4 (1965), 609–642 | MR | Zbl
[51] M. I. Vishik, V. V. Chepyzhov, S. V. Zelik, “Strong trajectory attractor for dissipative reaction-diffusion system”, Dokl. Math., 82:3 (2010), 869–873 | DOI | MR | Zbl
[52] J. M. Ghidaglia, “A note on the strong convergence towards attractors of damped forced KdV equations”, J. Differential Equations, 110:2 (1994), 356–359 | DOI | MR | Zbl
[53] I. Moise, R. Rosa, X. Wang, “Attractors for non-compact semigroups via energy equations”, Nonlinearity, 11:5 (1998), 1369–1393 | DOI | MR | Zbl
[54] J. Valero, A. Kapustyan, “On the connectedness and asymptotic behaviour of solutions of reaction-diffusion systems”, J. Math. Anal. Appl., 323:1 (2006), 614–633 | DOI | MR | Zbl
[55] V. Barcilon, P. Constantin, E. S. Titi, “Existence of solutions to the Stommel–Charney model of the Gulf stream”, SIAM J. Math. Anal., 19:6 (1988), 1355–1364 | DOI | MR | Zbl
[56] J.-C. Saut, “Remarks on the damped stationary Euler equations”, Differential Integral Equations, 3:5 (1990), 801–812 | MR | Zbl
[57] A. A. Il'in, “The Euler equations with dissipation”, Math. USSR-Sb., 74:2 (1993), 475–486 | DOI | MR | Zbl
[58] J. Pedlosky, Geophysical fluid dynamics, Springer-Verlag, New York, 1979 | Zbl
[59] V. I. Yudovich, “Non stationary flow of an ideal incompressible liquid”, USSR Comput. Math. Math. Phys., 3:6 (1963), 1407–1456 | DOI | MR | Zbl | Zbl
[60] V. I. Yudovich, “Nekotorye otsenki reshenii ellipticheskikh uravnenii”, Matem. sb., 59(101) {(dopolnitelnyi)} (1962), 229–244 | MR | Zbl
[61] C. Bardos, “Existence et unicité de la solution de l'équation d'Euler en dimension deux”, J. Math. Anal. Appl., 40:3 (1972), 769–790 | DOI | MR | Zbl
[62] V. V. Chepyzhov, M. I. Vishik, “Trajectory attractors for dissipative 2D Euler and Navier–Stokes equations”, Russ. J. Math. Phys., 15:2 (2008), 156–170 | DOI | MR | Zbl
[63] V. V. Chepyzhov, M. I. Vishik, S. V. Zelik, “Strong trajectory attractors for dissipative Euler equations”, J. Math. Pures Appl. (to appear) | DOI
[64] J. Leray, “Sur le mouvement d'un liquide visqueux emplissant l'espace”, Acta Math., 63:1 (1934), 193–248 | DOI | MR | Zbl
[65] E. Hopf, “Über die Anfangswertaufgable für die hydrodynamischen Grundgleichungen”, Math. Nachr., 4 (1951), 213–231 | MR | Zbl
[66] J. M. Ball, “Continuity properties and global attractors of generalized semiflows and the Navier–Stokes equations”, J. Nonlinear Sci., 7:5 (1997), 475–502 | DOI | MR | Zbl
[67] A. N. Kolmogorov, I. G. Petrovskii, N. S. Piskunov, “Issledovanie uravneniya diffuzii, soedinennoi s vozrastaniem kolichestva veschestva, i ego primenenie k odnoi biologicheskoi probleme”, Byull. Mosk. gos. un-ta. Sektsiya A. Matem., mekh., 1:6 (1937), 1–25 | Zbl
[68] A. I. Volpert, Vit. A. Volpert, Vl. A. Volpert, Traveling wave solutions of parabolic systems, Transl. Math. Monogr., 140, Amer. Math. Soc., Providence, RI, 1994, xii+448 pp. | MR | Zbl
[69] T. Ogiwara, H. Matano, “Stability analysis in order-preserving systems in the presence of symmetry”, Proc. Roy. Soc. Edinburgh Sect. A, 129:2 (1999), 395–438 | MR | Zbl
[70] K. Kirchgässner, “Wave-solutions of reversible systems and applications”, J. Differential Equations, 45:1 (1982), 113–127 | DOI | MR | Zbl
[71] A. Mielke, “Reduction of quasilinear elliptic equations in cylindrical domains with applications”, Math. Methods Appl. Sci., 10:1 (1988), 51–66 | DOI | MR | Zbl
[72] Á. Calsina, X. Mora, J. Solà-Morales, “The dynamical approach to elliptic problems in cylindrical domains, and a study of their parabolic singular limit”, J. Differential Equations, 102:2 (1993), 244–304 | DOI | MR | Zbl
[73] A. V. Babin, “The attractor of a generalized semigroup generated by an elliptic equation in a tube domain”, Russian Acad. Sci. Izv. Math., 44:2 (1995), 207–223 | DOI | MR | Zbl
[74] B. Fiedler, A. Scheel, M. I. Vishik, “Large patterns of elliptic systems in infinite cylinders”, J. Math. Pures Appl. (9), 77:9 (1998), 879–907 | DOI | MR | Zbl
[75] A. Scheel, “Existence of fast traveling waves for some parabolic equations: A dynamical systems approach”, J. Dynam. Differential Equations, 8:4 (1996), 469–548 | DOI | MR | Zbl
[76] A. Mielke, S. Zelik, “Infinite-dimensional trajectory attractors of elliptic boundary value problems in cylindrical domains”, Russian Math. Surveys, 57:4 (2002), 753–784 | DOI | MR | Zbl
[77] M. I. Vishik, S. V. Zelik, “The trajectory attractor of a non-linear elliptic system in a cylindrical domain”, Sb. Math., 187:12 (1996), 1755–1789 | DOI | MR | Zbl
[78] M. I. Vishik, S. V. Zelik, “Regular attractor for a non-linear elliptic system in a cylindrical domain”, Sb. Math., 190:5–6 (1999), 803–834 | DOI | MR | Zbl
[79] S. V. Zelik, “Trajectory attractor of a nonlinear elliptic system in an unbounded domain”, Math. Notes, 63:1-2 (1998), 120–123 | DOI | MR | Zbl
[80] S. V. Zelik, “Boundedness of solutions of a nonlinear elliptic system in a cylindrical domain”, Math. Notes, 61:3-4 (1997), 365–369 | DOI | MR | Zbl
[81] V. V. Chepyzhov, M. I. Vishik, “Perturbation of trajectory attractors for dissipative hyperbolic equations”, The Maz'ya anniversary collection, Vol. 2 (Rostock, 1998), Oper. Theory Adv. Appl., 110, Birkhäuser, Basel, 1999, 33–54 | MR | Zbl
[82] S. Zelik, “Asymptotic regularity of solutions of singularly perturbed damped wave equations with supercritical nonlinearities”, Discrete Contin. Dyn. Syst., 11:2–3 (2004), 351–392 | DOI | MR | Zbl
[83] M. I. Vishik, V. V. Chepyzhov, “Averaging of trajectory attractors of evolution equations with rapidly oscillating terms”, Sb. Math., 192:1 (2001), 11–47 | DOI | MR | Zbl
[84] C. Cao, D. D. Holm, E. S. Titi, “On the Clark-$\alpha$ model of turbulence: global regularity and long-time dynamics”, J. Turbul., 6 (2005), Paper 20, 11 pp. | DOI | MR | Zbl
[85] S. Chen, C. Foias, D. D. Holm, E. Olson, E. S. Titi, S. Wynne, “The Camassa–Holm equations and turbulence”, Phys. D, 133:1–4 (1999), 49–65 | DOI | MR | Zbl
[86] C. Foias, D. D. Holm, E. S. Titi, “The three dimensional viscous Camassa–Holm equations, and their relation to the Navier–Stokes equations and turbulence theory”, J. Dynam. Differential Equations, 14:1 (2002), 1–35 | DOI | MR | Zbl
[87] S. Chen, C. Foias, D. D. Holm, E. Olson, E. S. Titi, S. Wynne, “A connection between the Camassa–Holm equations and turbulent flows in channels and pipes”, Phys. Fluids, 11:8 (1999), 2343–2353 | DOI | MR | Zbl
[88] K. Mohseni, B. Kosović, S. Shkoller, J. E Marsden, “Numerical simulations of the Lagrangian averaged Navier–Stokes equations for homogeneous isotropic turbulence”, Phys. Fluids, 15:2 (2003), 524–544 | DOI | MR
[89] M. I. Vishik, E. S. Titi, V. V. Chepyzhov, “On convergence of trajectory attractors of the 3D Navier–Stokes $\alpha$-model as $\alpha$ approaches 0”, Sb. Math., 198:12 (2007), 1703–1736 | DOI | MR | Zbl
[90] V. V. Chepyzhov, E. S. Titi, M. I. Vishik, “On the convergence of solutions of the Leray-$\alpha$ model to the trajectory attractor of the 3D Navier–Stokes system”, Discrete Contin. Dyn. Syst., 17:3 (2007), 481–500 | DOI | MR | Zbl
[91] A. A. Ilyin, A. Miranville, E. S. Titi, “Small viscosity sharp estimates for the global attractor of the 2-D damped-driven Navier–Stokes equations”, Commun. Math. Sci., 2:3 (2004), 403–426 ; http://projecteuclid.org/euclid.cms/1109868728 | MR | Zbl
[92] A. A. Ilyin, E. S. Titi, “Sharp estimates for the number of degrees of freedom for the damped-driven 2-D Navier–Stokes equations”, J. Nonlinear Sci., 16:3 (2006), 233–253 | DOI | MR | Zbl
[93] R. FitzHugh, “Impulses and physiological states in theoretical models of nerve membranes”, Biophys. J., 1 (1961), 445–446 | DOI
[94] J. Nagumo, S. Arimoto, S. Yoshizawa, “An active pulse transmission line simulating nerve axon”, Proc. IRE, 50:10 (1962), 2061–2070 ; J. Nagumo, S. Yoshizawa, S. Arimoto, “Bistable transmission lines”, Trans. IEEE on Circuit Theory, 12:3 (1965), 400–412 | DOI | DOI
[95] M. I. Vishik, V. V. Chepyzhov, “Trajectory attractors of reaction-diffusion systems with small diffusion”, Sb. Math., 200:4 (2009), 471–497 | DOI | MR | Zbl
[96] M. Marion, “Finite-dimensional attractors associated with partly dissipative reaction-diffusion systems”, SIAM J. Math. Anal., 20:4 (1989), 816–844 | DOI | MR | Zbl