Trajectory attractors of equations of mathematical physics
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 66 (2011) no. 4, pp. 637-731 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this survey the method of trajectory dynamical systems and trajectory attractors is described, and is applied in the study of the limiting asymptotic behaviour of solutions of non-linear evolution equations. This method is especially useful in the study of dissipative equations of mathematical physics for which the corresponding Cauchy initial-value problem has a global (weak) solution with respect to the time but the uniqueness of this solution either has not been established or does not hold. An important example of such an equation is the 3D Navier–Stokes system in a bounded domain. In such a situation one cannot use directly the classical scheme of construction of a dynamical system in the phase space of initial conditions of the Cauchy problem of a given equation and find a global attractor of this dynamical system. Nevertheless, for such equations it is possible to construct a trajectory dynamical system and investigate a trajectory attractor of the corresponding translation semigroup. This universal method is applied for various types of equations arising in mathematical physics: for general dissipative reaction-diffusion systems, for the 3D Navier–Stokes system, for dissipative wave equations, for non-linear elliptic equations in cylindrical domains, and for other equations and systems. Special attention is given to using the method of trajectory attractors in approximation and perturbation problems arising in complicated models of mathematical physics. Bibliography: 96 titles.
Keywords: dynamical systems, trajectory attractors, equations of mathematical physics, ill-posed problems.
@article{RM_2011_66_4_a0,
     author = {M. I. Vishik and V. V. Chepyzhov},
     title = {Trajectory attractors of equations of mathematical physics},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {637--731},
     year = {2011},
     volume = {66},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2011_66_4_a0/}
}
TY  - JOUR
AU  - M. I. Vishik
AU  - V. V. Chepyzhov
TI  - Trajectory attractors of equations of mathematical physics
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2011
SP  - 637
EP  - 731
VL  - 66
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/RM_2011_66_4_a0/
LA  - en
ID  - RM_2011_66_4_a0
ER  - 
%0 Journal Article
%A M. I. Vishik
%A V. V. Chepyzhov
%T Trajectory attractors of equations of mathematical physics
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2011
%P 637-731
%V 66
%N 4
%U http://geodesic.mathdoc.fr/item/RM_2011_66_4_a0/
%G en
%F RM_2011_66_4_a0
M. I. Vishik; V. V. Chepyzhov. Trajectory attractors of equations of mathematical physics. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 66 (2011) no. 4, pp. 637-731. http://geodesic.mathdoc.fr/item/RM_2011_66_4_a0/

[1] A. V. Babin, M. I. Vishik, Attractors of evolution equations, Stud. Math. Appl., 25, North-Holland, Amsterdam, 1992 | MR | MR | Zbl | Zbl

[2] R. Temam, Infinite-dimensional dynamical systems in mechanics and physics, Appl. Math. Sci., 68, Springer-Verlag, New York, 1988 | MR | Zbl

[3] O. A. Ladyzhenskaya, Attractors for semigroups and evolution equations, Lezioni Lincee, Cambridge Univ. Press, Cambridge, New York, 1991, xii+73 pp. | MR | Zbl

[4] J. K. Hale, Asymptotic behavior of dissipative systems, Math. Surveys Monogr., 25, Amer. Math. Soc., Providence, RI, 1988 | MR | Zbl

[5] I. D. Chueshov, Introduction to the theory of infinite-dimensional dissipative systems, University Lectures in Contemporary Mathematics, Acta, Kharkiv, 2002, 418 pp. | MR | Zbl | Zbl

[6] G. R. Sell, Y. You, Dynamics of evolutionary equations, Appl. Math. Sci., 143, Springer-Verlag, New York, 2002 | MR | Zbl

[7] V. V. Chepyzhov, M. I. Vishik, “Trajectory attractors for evolution equations”, C. R. Acad. Sci. Paris Sér. I Math., 321:10 (1995), 1309–1314 | MR | Zbl

[8] V. V. Chepyzhov, M. I. Vishik, “An attractor of a non-autonomous Navier–Stokes system in three-dimensional space”, Russian Math. Surveys, 50:4 (1995), 807 | DOI

[9] V. V. Chepyzhov, M. I. Vishik, “Trajectory attractors for 2D Navier–Stokes systems and some generalizations”, Topol. Methods Nonlinear Anal., 8:2 (1996), 217–243 | MR | Zbl

[10] M. I. Vishik, V. V. Chepyzhov, “Trajectory attractors of evolution equations without unique solvability of the Cauchy problem”, Moscow Univ. Math. Bull., 51:6 (1997), 16–18 | MR | Zbl | Zbl

[11] V. V. Chepyzhov, M. I. Vishik, “Evolution equations and their trajectory attractors”, J. Math. Pures Appl. (9), 76:10 (1997), 913–964 | DOI | MR | Zbl

[12] V. V. Chepyzhov, M. I. Vishik, Attractors for equations of mathematical physics, Amer. Math. Soc. Colloq. Publ., 49, Amer. Math. Soc., Providence, RI, 2002 | MR | Zbl

[13] G. R. Sell, “Global attractors for the three-dimensional Navier–Stokes equations”, J. Dynam. Differential Equations, 8:1 (1996), 1–33 | DOI | MR | Zbl

[14] O. A. Ladyzhenskaya, “A dynamical system generated by the Navier–Stokes equations”, J. Sov. Math., 3:4 (1975), 458–479 | DOI | MR | Zbl | Zbl

[15] O. A. Ladyzhenskaya, “Finite-dimensionality of bounded invariant sets for Navier–Stokes systems and other dissipative systems”, J. Sov. Math., 28:5 (1985), 714–726 | DOI | MR | Zbl | Zbl

[16] I. D. Chueshov, “Global attractors for non-linear problems of mathematical physics”, Russian Math. Surveys, 48:3 (1993), 133–161 | DOI | MR | Zbl

[17] A. V. Babin, “Global attractors in PDE”, v. 1B, Handbook of dynamical systems, Elsevier B. V., Amsterdam, 2006, 983–1085 | MR | Zbl

[18] G. Raugel, “Global attractors in partial differential equations”, v. 2, Handbook of dynamical systems, ed. B. Fiedler, North-Holland, Amsterdam, 2002, 885–982 | MR | Zbl

[19] A. Miranville, S. Zelik, “Attractors for dissipative partial differential equations in bounded and unbounded domains”, v. 4, Handbook of differential equations: evolutionary equations, North-Holland, Amsterdam, 2008, 103–200 | MR | Zbl

[20] J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Graytier-Villars, Paris, 1969 | MR | MR | Zbl | Zbl

[21] J. Smoller, Shock waves and reaction-diffusion equations, Grundlehren Math. Wiss., 258, Springer-Verlag, New York–Berlin, 1983, xxi+581 pp. | MR | Zbl

[22] V. K. Vanag, Dissipativnye struktury v reaktsionno-diffuzionnykh sistemakh, IKI, M.–Izhevsk, 2008

[23] J. C. Robinson, Infinite-dimensional dynamical systems, An introduction to dissipative parabolic PDEs and the theory of global attractors, Cambridge Texts Appl. Math., Cambridge Univ. Press, Cambridge, 2001 | MR | Zbl

[24] A. V. Babin, “Attractors of Navier–Stokes equations”, v. II, Handbook of mathematical fluid dynamics, North-Holland, Amsterdam, 2003, 169–222 | MR | Zbl

[25] O. A. Ladyzhenskaya, Matematicheskie voprosy dinamiki vyazkoi neszhimaemoi zhidkosti, Fizmatgiz, M., 1961; 2-Рμ РёР·Рґ., Наука, Рњ., 1970 ; O. A. Ladyzhenskaya, The mathematical theory of viscous incompressible flow, Gordon and Breach, New York–London, 1963 | MR | Zbl | MR | Zbl

[26] R. Temam, Navier–Stokes equations, Stud. Math. Appl., 2, North-Holland, Amsterdam–New York–Oxford, 1979 | MR | MR | Zbl | Zbl

[27] P. Constantin, C. Foias, Navier–Stokes equations, Chicago Lectures in Math., Chicago Univ. Press, Chicago, IL, 1988 | MR | Zbl

[28] A. Haraux, “Two remarks on dissipative hyperbolic problems”, Nonlinear partial differential equations and their applications. Collège de France seminar (Paris, 1983–1984), v. 7, Res. Notes in Math., 112, eds. H. Brezis, J.-L. Lions, Pitman, Boston, MA, 1985, 161–179 | MR | Zbl

[29] J. M. Ghidaglia, R. Temam, “Attractors for damped nonlinear hyperbolic equations”, J. Math. Pures Appl. (9), 66:3 (1987), 273–319 | MR | Zbl

[30] O. A. Ladyzhenskaya, “On the determination of minimal global attractors for the Navier–Stokes and other partial differential equations”, Russian Math. Surveys, 42:6 (1987), 27–73 | DOI | MR | Zbl

[31] J. Arrieta, A. N. Carvalho, J. K. Hale, “A damped hyperbolic equation with critical exponent”, Comm. Partial Differential Equations, 17:5–6 (1992), 841–866 | DOI | MR | Zbl

[32] E. Feireisl, “Attractors for wave equations with nonlinear dissipation and critical exponent”, C. R. Acad. Sci. Paris Sér. I Math., 315:5 (1992), 551–555 | MR | Zbl

[33] M. Grasselli, V. Pata, “On the damped semilinear wave equation with critical exponent”, Dynamical systems and differential equations (Wilmington, NC, 2002), Discrete Contin. Dyn. Syst., suppl., 2003, 351–358 | MR | Zbl

[34] V. Pata, S. Zelik, “A remark on the weakly damped wave equation”, Commun. Pure Appl. Anal., 5:3 (2006), 611–616 | DOI | MR | Zbl

[35] N. Kopell, L. N. Howard, “Plane wave solutions to reaction-diffusion equations”, Stud. Appl. Math., 52 (1973), 291–328 | MR | Zbl

[36] Y. Kuramoto, T. Tsuzuki, “On the formation of dissipative structures in reaction-diffusion systems. Reduction perturbation approach”, Progr. Theoret. Phys., 54:3 (1975), 687–699 | DOI

[37] A. Mielke, “The Ginzburg–Landau equation in its role as a modulation equation”, Handbook of dynamical systems, 2, North-Holland, Amsterdam, 2002, 759–834 | DOI | MR | Zbl

[38] A. Mielke, “Bounds for the solutions of the complex Ginzburg–Landau equation in terms of the dispersion parameters”, Phys. D, 117:1–4 (1998), 106–116 | DOI | MR | Zbl

[39] S. V. Zelik, “The attractor for a nonlinear reaction-diffusion system with a supercritical nonlinearity and its dimension”, Rend. Accad. Naz. Sci. XL Mem. Mat. Appl. (5), 24 (2000), 1–25 | MR

[40] C. R. Doering, J. D. Gibbon, C. D. Levermore, “Weak and strong solutions of the complex Ginzburg–Landau equation”, Phys. D, 71:3 (1994), 285–318 | DOI | MR | Zbl

[41] J. M.Ghidaglia, B. Héron, “Dimension of the attractors associated to the Ginzburg–Landau partial differential equation”, Phys. D, 28:3 (1987), 282–304 | DOI | MR | Zbl

[42] C. R. Doering, J. D. Gibbon, D. D. Holm, B. Nicolaenko, “Low-dimensional behaviour in the complex Ginzburg–Landau equation”, Nonlinearity, 1:2 (1988), 279–309 | DOI | MR | Zbl

[43] A. Mielke, “The complex Ginzburg–Landau equation on large and unbounded domains: sharper bounds and attractors”, Nonlinearity, 10 (1997), 199–222 | DOI | MR | Zbl

[44] M. I. Vishik, V. V. Chepyzhov, “Non-autonomous Ginzburg–Landau equation and its attractors”, Sb. Math., 196:6 (2005), 791–815 | DOI | MR | Zbl

[45] V. V. Chepyzhov, M. I. Vishik, “Trajectory attractors for reaction-diffusion systems”, Topol. Methods Nonlinear Anal., 7:1 (1996), 49–76 ; http://www-users.mat.uni.torun.pl/t̃mna/files/v07n1-02.pdf | MR | Zbl

[46] Ph. Hartman, Ordinary differential equations, Wiley, New York–London–Sydney, 1964, xiv+612 pp. | MR | MR | Zbl | Zbl

[47] J.-L. Lions, E. Magenes, Problèmes aux limites non homogènes et applications, v. 1, Dunod, Paris, 1968 | MR | MR | Zbl | Zbl

[48] P. S. Aleksandrov, A. N. Kolmogorov, Vvedenie v teoriyu mnozhestv i teoriyu funktsii. Ch. 1. Vvedenie v obschuyu teoriyu mnozhestv i funktsii, Gostekhizdat, M., 1948 | MR | Zbl

[49] J.-P. Aubin, “Un théorème de compacité”, C. R. Acad. Sci. Paris, 256 (1963), 5042–5044 | MR | Zbl

[50] Yu. A. Dubinskii, “Slabaya skhodimost v nelineinykh ellipticheskikh i parabolicheskikh uravneniyakh”, Matem. sb., 67(109):4 (1965), 609–642 | MR | Zbl

[51] M. I. Vishik, V. V. Chepyzhov, S. V. Zelik, “Strong trajectory attractor for dissipative reaction-diffusion system”, Dokl. Math., 82:3 (2010), 869–873 | DOI | MR | Zbl

[52] J. M. Ghidaglia, “A note on the strong convergence towards attractors of damped forced KdV equations”, J. Differential Equations, 110:2 (1994), 356–359 | DOI | MR | Zbl

[53] I. Moise, R. Rosa, X. Wang, “Attractors for non-compact semigroups via energy equations”, Nonlinearity, 11:5 (1998), 1369–1393 | DOI | MR | Zbl

[54] J. Valero, A. Kapustyan, “On the connectedness and asymptotic behaviour of solutions of reaction-diffusion systems”, J. Math. Anal. Appl., 323:1 (2006), 614–633 | DOI | MR | Zbl

[55] V. Barcilon, P. Constantin, E. S. Titi, “Existence of solutions to the Stommel–Charney model of the Gulf stream”, SIAM J. Math. Anal., 19:6 (1988), 1355–1364 | DOI | MR | Zbl

[56] J.-C. Saut, “Remarks on the damped stationary Euler equations”, Differential Integral Equations, 3:5 (1990), 801–812 | MR | Zbl

[57] A. A. Il'in, “The Euler equations with dissipation”, Math. USSR-Sb., 74:2 (1993), 475–486 | DOI | MR | Zbl

[58] J. Pedlosky, Geophysical fluid dynamics, Springer-Verlag, New York, 1979 | Zbl

[59] V. I. Yudovich, “Non stationary flow of an ideal incompressible liquid”, USSR Comput. Math. Math. Phys., 3:6 (1963), 1407–1456 | DOI | MR | Zbl | Zbl

[60] V. I. Yudovich, “Nekotorye otsenki reshenii ellipticheskikh uravnenii”, Matem. sb., 59(101) {(dopolnitelnyi)} (1962), 229–244 | MR | Zbl

[61] C. Bardos, “Existence et unicité de la solution de l'équation d'Euler en dimension deux”, J. Math. Anal. Appl., 40:3 (1972), 769–790 | DOI | MR | Zbl

[62] V. V. Chepyzhov, M. I. Vishik, “Trajectory attractors for dissipative 2D Euler and Navier–Stokes equations”, Russ. J. Math. Phys., 15:2 (2008), 156–170 | DOI | MR | Zbl

[63] V. V. Chepyzhov, M. I. Vishik, S. V. Zelik, “Strong trajectory attractors for dissipative Euler equations”, J. Math. Pures Appl. (to appear) | DOI

[64] J. Leray, “Sur le mouvement d'un liquide visqueux emplissant l'espace”, Acta Math., 63:1 (1934), 193–248 | DOI | MR | Zbl

[65] E. Hopf, “Über die Anfangswertaufgable für die hydrodynamischen Grundgleichungen”, Math. Nachr., 4 (1951), 213–231 | MR | Zbl

[66] J. M. Ball, “Continuity properties and global attractors of generalized semiflows and the Navier–Stokes equations”, J. Nonlinear Sci., 7:5 (1997), 475–502 | DOI | MR | Zbl

[67] A. N. Kolmogorov, I. G. Petrovskii, N. S. Piskunov, “Issledovanie uravneniya diffuzii, soedinennoi s vozrastaniem kolichestva veschestva, i ego primenenie k odnoi biologicheskoi probleme”, Byull. Mosk. gos. un-ta. Sektsiya A. Matem., mekh., 1:6 (1937), 1–25 | Zbl

[68] A. I. Volpert, Vit. A. Volpert, Vl. A. Volpert, Traveling wave solutions of parabolic systems, Transl. Math. Monogr., 140, Amer. Math. Soc., Providence, RI, 1994, xii+448 pp. | MR | Zbl

[69] T. Ogiwara, H. Matano, “Stability analysis in order-preserving systems in the presence of symmetry”, Proc. Roy. Soc. Edinburgh Sect. A, 129:2 (1999), 395–438 | MR | Zbl

[70] K. Kirchgässner, “Wave-solutions of reversible systems and applications”, J. Differential Equations, 45:1 (1982), 113–127 | DOI | MR | Zbl

[71] A. Mielke, “Reduction of quasilinear elliptic equations in cylindrical domains with applications”, Math. Methods Appl. Sci., 10:1 (1988), 51–66 | DOI | MR | Zbl

[72] Á. Calsina, X. Mora, J. Solà-Morales, “The dynamical approach to elliptic problems in cylindrical domains, and a study of their parabolic singular limit”, J. Differential Equations, 102:2 (1993), 244–304 | DOI | MR | Zbl

[73] A. V. Babin, “The attractor of a generalized semigroup generated by an elliptic equation in a tube domain”, Russian Acad. Sci. Izv. Math., 44:2 (1995), 207–223 | DOI | MR | Zbl

[74] B. Fiedler, A. Scheel, M. I. Vishik, “Large patterns of elliptic systems in infinite cylinders”, J. Math. Pures Appl. (9), 77:9 (1998), 879–907 | DOI | MR | Zbl

[75] A. Scheel, “Existence of fast traveling waves for some parabolic equations: A dynamical systems approach”, J. Dynam. Differential Equations, 8:4 (1996), 469–548 | DOI | MR | Zbl

[76] A. Mielke, S. Zelik, “Infinite-dimensional trajectory attractors of elliptic boundary value problems in cylindrical domains”, Russian Math. Surveys, 57:4 (2002), 753–784 | DOI | MR | Zbl

[77] M. I. Vishik, S. V. Zelik, “The trajectory attractor of a non-linear elliptic system in a cylindrical domain”, Sb. Math., 187:12 (1996), 1755–1789 | DOI | MR | Zbl

[78] M. I. Vishik, S. V. Zelik, “Regular attractor for a non-linear elliptic system in a cylindrical domain”, Sb. Math., 190:5–6 (1999), 803–834 | DOI | MR | Zbl

[79] S. V. Zelik, “Trajectory attractor of a nonlinear elliptic system in an unbounded domain”, Math. Notes, 63:1-2 (1998), 120–123 | DOI | MR | Zbl

[80] S. V. Zelik, “Boundedness of solutions of a nonlinear elliptic system in a cylindrical domain”, Math. Notes, 61:3-4 (1997), 365–369 | DOI | MR | Zbl

[81] V. V. Chepyzhov, M. I. Vishik, “Perturbation of trajectory attractors for dissipative hyperbolic equations”, The Maz'ya anniversary collection, Vol. 2 (Rostock, 1998), Oper. Theory Adv. Appl., 110, Birkhäuser, Basel, 1999, 33–54 | MR | Zbl

[82] S. Zelik, “Asymptotic regularity of solutions of singularly perturbed damped wave equations with supercritical nonlinearities”, Discrete Contin. Dyn. Syst., 11:2–3 (2004), 351–392 | DOI | MR | Zbl

[83] M. I. Vishik, V. V. Chepyzhov, “Averaging of trajectory attractors of evolution equations with rapidly oscillating terms”, Sb. Math., 192:1 (2001), 11–47 | DOI | MR | Zbl

[84] C. Cao, D. D. Holm, E. S. Titi, “On the Clark-$\alpha$ model of turbulence: global regularity and long-time dynamics”, J. Turbul., 6 (2005), Paper 20, 11 pp. | DOI | MR | Zbl

[85] S. Chen, C. Foias, D. D. Holm, E. Olson, E. S. Titi, S. Wynne, “The Camassa–Holm equations and turbulence”, Phys. D, 133:1–4 (1999), 49–65 | DOI | MR | Zbl

[86] C. Foias, D. D. Holm, E. S. Titi, “The three dimensional viscous Camassa–Holm equations, and their relation to the Navier–Stokes equations and turbulence theory”, J. Dynam. Differential Equations, 14:1 (2002), 1–35 | DOI | MR | Zbl

[87] S. Chen, C. Foias, D. D. Holm, E. Olson, E. S. Titi, S. Wynne, “A connection between the Camassa–Holm equations and turbulent flows in channels and pipes”, Phys. Fluids, 11:8 (1999), 2343–2353 | DOI | MR | Zbl

[88] K. Mohseni, B. Kosović, S. Shkoller, J. E Marsden, “Numerical simulations of the Lagrangian averaged Navier–Stokes equations for homogeneous isotropic turbulence”, Phys. Fluids, 15:2 (2003), 524–544 | DOI | MR

[89] M. I. Vishik, E. S. Titi, V. V. Chepyzhov, “On convergence of trajectory attractors of the 3D Navier–Stokes $\alpha$-model as $\alpha$ approaches 0”, Sb. Math., 198:12 (2007), 1703–1736 | DOI | MR | Zbl

[90] V. V. Chepyzhov, E. S. Titi, M. I. Vishik, “On the convergence of solutions of the Leray-$\alpha$ model to the trajectory attractor of the 3D Navier–Stokes system”, Discrete Contin. Dyn. Syst., 17:3 (2007), 481–500 | DOI | MR | Zbl

[91] A. A. Ilyin, A. Miranville, E. S. Titi, “Small viscosity sharp estimates for the global attractor of the 2-D damped-driven Navier–Stokes equations”, Commun. Math. Sci., 2:3 (2004), 403–426 ; http://projecteuclid.org/euclid.cms/1109868728 | MR | Zbl

[92] A. A. Ilyin, E. S. Titi, “Sharp estimates for the number of degrees of freedom for the damped-driven 2-D Navier–Stokes equations”, J. Nonlinear Sci., 16:3 (2006), 233–253 | DOI | MR | Zbl

[93] R. FitzHugh, “Impulses and physiological states in theoretical models of nerve membranes”, Biophys. J., 1 (1961), 445–446 | DOI

[94] J. Nagumo, S. Arimoto, S. Yoshizawa, “An active pulse transmission line simulating nerve axon”, Proc. IRE, 50:10 (1962), 2061–2070 ; J. Nagumo, S. Yoshizawa, S. Arimoto, “Bistable transmission lines”, Trans. IEEE on Circuit Theory, 12:3 (1965), 400–412 | DOI | DOI

[95] M. I. Vishik, V. V. Chepyzhov, “Trajectory attractors of reaction-diffusion systems with small diffusion”, Sb. Math., 200:4 (2009), 471–497 | DOI | MR | Zbl

[96] M. Marion, “Finite-dimensional attractors associated with partly dissipative reaction-diffusion systems”, SIAM J. Math. Anal., 20:4 (1989), 816–844 | DOI | MR | Zbl