Weighted Radon transforms for which Chang's approximate inversion formula is exact
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 66 (2011) no. 2, pp. 442-443
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{RM_2011_66_2_a8,
author = {R. G. Novikov},
title = {Weighted {Radon} transforms for which {Chang's} approximate inversion formula is exact},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {442--443},
year = {2011},
volume = {66},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2011_66_2_a8/}
}
TY - JOUR AU - R. G. Novikov TI - Weighted Radon transforms for which Chang's approximate inversion formula is exact JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2011 SP - 442 EP - 443 VL - 66 IS - 2 UR - http://geodesic.mathdoc.fr/item/RM_2011_66_2_a8/ LA - en ID - RM_2011_66_2_a8 ER -
R. G. Novikov. Weighted Radon transforms for which Chang's approximate inversion formula is exact. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 66 (2011) no. 2, pp. 442-443. http://geodesic.mathdoc.fr/item/RM_2011_66_2_a8/
[1] F. Natterer, The mathematics of computerized tomography, Teubner, Stuttgart, 1986 | MR | Zbl
[2] L. A. Kunyansky, Inverse Problems, 8:5 (1992), 809–819 | DOI | MR | Zbl
[3] J. Radon, Ber. Verh. Konigl. Sachs. Ges. Wiss. Leipzig, 69 (1917), 262–277 | MR | Zbl
[4] R. G. Novikov, Ark. Mat., 40:1 (2002), 145–167 | DOI | MR | Zbl
[5] J. Boman, J. O. Strömberg, J. Geom. Anal., 14:2 (2004), 185–198 | MR | Zbl
[6] S. Gindikin, Inverse Probl. Imaging, 4:4 (2010), 649–653 | DOI | MR | Zbl
[7] L. T. Chang, IEEE Trans. Nucl. Sci., 25:1 (1978), 638–643 | DOI
[8] K. Murase, H. Itoh, H. Mogami, M. Ishine, M. Kawamura, A. Lio, K. Hamamoto, Eur. J. Nucl. Med., 13 (1987), 55–62
[9] R. G. Novikov, arXiv: 1101.1725