Representation of a fractional Brownian motion in terms of an infinite-dimensional Ornstein–Uhlenbeck process
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 66 (2011) no. 2, pp. 439-441
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{RM_2011_66_2_a7,
author = {A. A. Muravlev},
title = {Representation of a~fractional {Brownian} motion in terms of an infinite-dimensional {Ornstein{\textendash}Uhlenbeck} process},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {439--441},
year = {2011},
volume = {66},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2011_66_2_a7/}
}
TY - JOUR AU - A. A. Muravlev TI - Representation of a fractional Brownian motion in terms of an infinite-dimensional Ornstein–Uhlenbeck process JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2011 SP - 439 EP - 441 VL - 66 IS - 2 UR - http://geodesic.mathdoc.fr/item/RM_2011_66_2_a7/ LA - en ID - RM_2011_66_2_a7 ER -
%0 Journal Article %A A. A. Muravlev %T Representation of a fractional Brownian motion in terms of an infinite-dimensional Ornstein–Uhlenbeck process %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2011 %P 439-441 %V 66 %N 2 %U http://geodesic.mathdoc.fr/item/RM_2011_66_2_a7/ %G en %F RM_2011_66_2_a7
A. A. Muravlev. Representation of a fractional Brownian motion in terms of an infinite-dimensional Ornstein–Uhlenbeck process. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 66 (2011) no. 2, pp. 439-441. http://geodesic.mathdoc.fr/item/RM_2011_66_2_a7/
[1] Yu. Mishura, Stochastic calculus for fractional Brownian motion and related processes, Lecture Notes in Math., 1929, Springer, Berlin, 2008 | DOI | MR | Zbl
[2] G. Peskir, A. Shiryaev, Optimal stopping and free-boundary problems, Birkhäuser, Basel, 2006 | MR | Zbl
[3] A. Novikov, E. Valkeila, Statist. Probab. Lett., 44 (1999), 47–54 | DOI | MR | Zbl
[4] B. B. Mandelbrot, J. W. van Ness, SIAM Rev., 10 (1968), 422–437 | DOI | MR | Zbl
[5] R. Sh. Liptser, A. N. Shiryaev, Statistika sluchainykh protsessov, Nauka, M., 1974, 216–218 | MR | Zbl
[6] J. L. Pedersen, G. Peskir, Stochastic Anal. Appl., 18:5 (2000), 811–835 | DOI | MR | Zbl