Arithmetic hypergeometric series
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 66 (2011) no. 2, pp. 369-420 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The main goal of this survey is to give common characteristics of auxiliary hypergeometric functions (and their generalisations), functions which occur in number-theoretic problems. Originally designed as a tool for solving these problems, the hypergeometric series have become a connecting link between different areas of number theory and mathematics in general. Bibliography: 183 titles.
Keywords: hypergeometric series, zeta value, Ramanujan's mathematics, irrationality measure, modular form, Calabi–Yau differential equation, Mahler measure, Wilf–Zeilberger theory, algorithm of creative telescoping.
Mots-clés : Diophantine approximation
@article{RM_2011_66_2_a3,
     author = {W. Zudilin},
     title = {Arithmetic hypergeometric series},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {369--420},
     year = {2011},
     volume = {66},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2011_66_2_a3/}
}
TY  - JOUR
AU  - W. Zudilin
TI  - Arithmetic hypergeometric series
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2011
SP  - 369
EP  - 420
VL  - 66
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/RM_2011_66_2_a3/
LA  - en
ID  - RM_2011_66_2_a3
ER  - 
%0 Journal Article
%A W. Zudilin
%T Arithmetic hypergeometric series
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2011
%P 369-420
%V 66
%N 2
%U http://geodesic.mathdoc.fr/item/RM_2011_66_2_a3/
%G en
%F RM_2011_66_2_a3
W. Zudilin. Arithmetic hypergeometric series. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 66 (2011) no. 2, pp. 369-420. http://geodesic.mathdoc.fr/item/RM_2011_66_2_a3/

[1] M. Aganagic, V. Bouchard, A. Klemm, “Topological strings and (almost) modular forms”, Comm. Math. Phys., 277:3 (2008), 771–819 | DOI | MR | Zbl

[2] G. Almkvist, J. Guillera, “Ramanujan-like series for $1/\pi^2$ and string theory”, Preprint at , 2010 <tt>arXiv: 1009.5202 [math.NT]</tt>

[3] G. Almkvist, C. van Enckevort, D. van Straten, W. Zudilin, “Tables of Calabi–Yau equations”, Preprint at , 2005–2010 <tt>arXiv: math.AG/0507430</tt>

[4] G. Almkvist, D. van Straten, W. Zudilin, “Apéry limits of differential equations of order $4$ and $5$”, Modular Forms and String Duality, Fields Inst. Commun. Ser., 54, Amer. Math. Soc. Fields Inst., Providence, RI, 2008, 105–123 | MR | Zbl

[5] G. Almkvist, D. van Straten, W. Zudilin, “Generalizations of Clausen's formula and algebraic transformations of Calabi–Yau differential equations”, Proc. Edinburgh Math. Soc., 54 (2011) (to appear)

[6] G. Almkvist, W. Zudilin, “Differential equations, mirror maps and zeta values”, Mirror Symmetry V, AMS/IP Studies in Adv. Math., 38, Amer. Math. Soc. International Press, Providence, RI, 2006, 481–515 | MR | Zbl

[7] Y. André, $G$-functions and geometry, Aspects Math., E13, Friedr. Vieweg Sohn, Braunschweig, 1989 | MR | Zbl

[8] G. E. Andrews, “Problems and prospects for basic hypergeometric functions”, Theory and application of special functions, Proc. Advanced Sem., Math. Res. Center (Univ. Wisconsin, Madison, WI, 1975), Math. Res. Center, Univ. Wisconsin, 35, ed. R. A. Askey, Academic Press, New York, 1975, 191–224 | MR | Zbl

[9] G. E. Andrews, “The well-poised thread: An organized chronicle of some amazing summations and their implications”, Ramanujan J., 1:1 (1997), 7–23 | DOI | MR | Zbl

[10] G. E. Andrews, R. Askey, R. Roy, Special functions, Encyclopedia Math. Appl., 71, Cambridge Univ. Press, Cambridge, 1999 | MR | Zbl

[11] G. E. Andrews, B. C. Berndt, Ramanujan's Lost Notebook. Part I, Springer-Verlag, New York, 2005 ; Part II, Springer-Verlag, New York, 2009 | MR | Zbl | MR | Zbl

[12] R. Apéry, “Irrationalité de $\zeta(2)$ et $\zeta(3)$”, Journées arithmétiques de Luminy (Luminy, 1978), Astérisque, 61, 1979, 11–13 | MR | Zbl

[13] W. N. Bailey, Generalized hypergeometric series, Cambridge Tracts in Math., 32, Cambridge Univ. Press, Cambridge, 1935 ; 2nd reprinted ed.: Stechert-Hafner, New York–London, 1964 | Zbl | MR

[14] A. Baker, J. Coates, “Fractional parts of powers of rationals”, Math. Proc. Cambridge Philos. Soc., 77:2 (1975), 269–279 | DOI | MR | Zbl

[15] K. Ball, T. Rivoal, “Irrationalité d'une infinité de valeurs de la fonction zêta aux entiers impairs”, Invent. Math., 146:1 (2001), 193–207 | DOI | MR | Zbl

[16] N. D. Baruah, B. C. Berndt, H. H. Chan, “Ramanujan's series for $1/\pi$: a survey”, Amer. Math. Monthly, 116:7 (2009), 567–587 | DOI | MR

[17] M. A. Bennett, “Fractional parts of powers of rational numbers”, Math. Proc. Cambridge Philos. Soc., 114:2 (1993), 191–201 | DOI | MR | Zbl

[18] M. A. Bennett, “An ideal Waring problem with restricted summands”, Acta Arith., 66:2 (1994), 125–132 | MR | Zbl

[19] B. C. Berndt, Ramanujan's notebooks. Part I, Springer-Verlag, New York, 1985 ; Part II, Springer-Verlag, New York, 1989 ; Part III, Springer-Verlag, New York, 1991 ; Part IV, Springer-Verlag, New York, 1994 ; Part V, Springer-Verlag, New York, 1998 | MR | Zbl | MR | Zbl | MR | Zbl | MR | Zbl | MR | Zbl

[20] M. J. Bertin, “Mesure de Mahler d'une famille de polynômes”, J. Reine Angew. Math., 569 (2004), 175–188 | DOI | MR | Zbl

[21] F. Beukers, “A note on the irrationality of $\zeta(2)$ and $\zeta(3)$”, Bull. London Math. Soc., 11:3 (1979), 268–272 | DOI | MR | Zbl

[22] F. Beukers, “Fractional parts of powers of rationals”, Math. Proc. Cambridge Philos. Soc., 90:1 (1981), 13–20 | DOI | MR | Zbl

[23] F. Beukers, “Irrationality of $\pi^2$, periods of an elliptic curve and $\Gamma_1(5)$”, Diophantine approximations and transcendental numbers (Luminy, 1982), Progr. Math., 31, Birkhäuser, Boston, MA, 1983, 47–66 | MR | Zbl

[24] F. Beukers, “Irrationality proofs using modular forms”, Journées arithmétiques de Besançon" (Besançon, 1985), Astérisque, 147-148, 1987, 271–283 | MR | Zbl

[25] F. Beukers, “On Dwork's accessory parameter problem”, Math. Z., 241:2 (2002), 425–444 | DOI | MR | Zbl

[26] F. Beukers, G. Heckman, “Monodromy for the hypergeometric function ${}_nF_{n-1}$”, Invent. Math., 95:2 (1989), 325–354 | DOI | MR | Zbl

[27] J.-P. Bézivin, “Indépendence linéaire des valeurs des solutions transcendantes de certaines équations fonctionnelles”, Manuscripta Math., 61:1 (1988), 103–129 | DOI | MR | Zbl

[28] J. W. Bober, “Factorial ratios, hypergeometric series, and a family of step functions”, J. London Math. Soc. (2), 79 (2009), 422–444 | DOI | MR | Zbl

[29] M. Bogner, Differentielle Galoisgruppen und Transformationstheorie für Calabi–Yau-Operatoren vierter Ordnung, Diploma-Thesis, Institut für Mathematik, Johannes Gutenberg-Universität, Mainz, 2008

[30] J. M. Borwein, P. B. Borwein, Pi and the AGM; A study in analytic number theory and computational complexity, Wiley, New York, 1987 | MR | Zbl

[31] J. M. Borwein, A. Straub, J. Wan, W. Zudilin, “Densities of short uniform random walks”, Preprint at , 2011 <tt>arXiv: 1103.2995 [math.CA]</tt>

[32] P. Borwein, “On the irrationality of $\sum\frac1{q^n+r}$”, J. Number Theory, 37 (1991), 253–259 | DOI | MR | Zbl

[33] D. W. Boyd, “Speculations concerning the range of Mahler's measure”, Canad. Math. Bull., 24:4 (1981), 453–469 | DOI | MR | Zbl

[34] D. W. Boyd, “Mahler's measure and special values of $L$-functions”, Experiment. Math., 7:1 (1998), 37–82 | MR | Zbl

[35] D. W. Boyd, “Mahler's measure and invariants of hyperbolic manifolds”, Number theory for the millennium, I, A K Peters, Natick, MA, 2002, 127–143 | MR | Zbl

[36] F. Brunault, “Version explicite du théorème de Beilinson pour la courbe modulaire $X_1(N)$”, C. R. Math. Acad. Sci. Paris, 343:8 (2006), 505–510 | DOI | MR | Zbl

[37] P. Bundschuh, K. Väänänen, “Arithmetical investigations of a certain infinite product”, Compositio Math., 91 (1994), 175–199 | MR | Zbl

[38] P. Bundschuh, K. Väänänen, “Linear independance of $q$-analogues of certain classical constants”, Result. Math., 47 (2005), 33–44 | MR | Zbl

[39] P. Bundschuh, W. Zudilin, “Rational approximations to a $q$-analogue of $\pi$ and some other $q$-series”, Diophantine Approximation, Dev. Math., 16, Springer-Verlag, Vienna, 2008, 123–139 | DOI | MR | Zbl

[40] P. Candelas, X. C. de la Ossa, P. S. Green, L. Parkes, “A pair of Calabi–Yau manifolds as an exactly soluble superconformal theory”, Nuclear Phys. B, 359:1 (1991), 21–74 | DOI | MR | Zbl

[41] Y.-H. Chen, Y. Yang, N. Yui, “Monodromy of Picard–Fuchs differential equations for Calabi–Yau threefolds”, with an appendix by C. Erdenberger, J. Reine Angew. Math., 616 (2008), 167–203 | DOI | MR | Zbl

[42] G. V. Chudnovsky, “On the method of Thue–Siegel”, Ann. of Math. (2), 117:2 (1983), 325–382 | DOI | MR | Zbl

[43] D. V. Chudnovsky, G. V. Chudnovsky, “Approximations and complex multiplication according to Ramanujan”, Ramanujan revisited (Urbana-Champaign, IL, 1987), Academic Press, Boston, MA, 1988, 375–472 | MR | Zbl

[44] J. Cullen, “Pi formula”, Preprint (December 2010)

[45] E. Delaygue, “Critère pour l'intégralité des coefficients de Taylor des applications miroir”, J. Reine Angew. Math. (to appear); Preprint at , 2009 <tt>arXiv: 0912.3776 [math.NT]</tt>

[46] F. Delmer, J.-M. Deshouillers, “The computation of $g(k)$ in Waring's problem”, Math. Comp., 54 (1990), 885–893 | DOI | MR | Zbl

[47] C. Deninger, “Deligne periods of mixed motives, $K$-theory and the entropy of certain $\mathbb Z\sp n$-actions”, J. Amer. Math. Soc., 10:2 (1997), 259–281 | DOI | MR | Zbl

[48] A. K. Dubitskas [A. Dubickas], “A lower bound on the value of $\|(3/2)^k\|$”, Russian Math. Surveys, 45:4 (1990), 163–164 | DOI | MR | Zbl

[49] D. Duverney, “Irrationalité d'un $q$-analogue de $\zeta(2)$”, C. R. Acad. Sci. Paris Sér. I Math., 321:10 (1995), 1287–1289 | MR | Zbl

[50] R. Dvornicich, C. Viola, “Some remarks on Beukers' integrals”, Number theory, Vol. II (Budapest, 1987), Colloq. Math. Soc. János Bolyai, 51, North-Holland, Amsterdam, 1987, 637–657 | MR

[51] S. B. Ekhad, D. Zeilberger, “A WZ proof of Ramanujan's formula for $\pi$”, Geometry, Analysis, and Mechanics, ed. J. M. Rassias, World Sci. Publ., River Edge, NJ, 1994, 107–108 | MR | Zbl

[52] P. Erdös, “On arithmetical properties of Lambert series”, J. Indiana Math. Soc. (N. S.), 12 (1948), 63–66 | MR | Zbl

[53] L. Euler, “Variae observationes circa series infinitas”, Comm. Acad. Sci. Imp. Petropol., 9 (1737), 160–188; Reprint: Opera Omnia Ser. I, 14, Teubner, Berlin, 1925, 216–245

[54] L. Euler, “Meditationes circa singulare serierum genus”, Novi Comm. Acad. Sci. Petropol., 20 (1775), 140–186; Reprint: Opera Omnia Ser. I, 15, Teubner, Berlin, 1927, 217–267

[55] S. R. Finch, Mathematical constants, Encyclopedia Math. Appl., 94, Cambridge University Press, Cambridge, 2003 | MR | Zbl

[56] S. R. Finch, “Modular forms on $\mathrm{SL}_2(\mathbb{Z})$”, Preprint at http://algo.inria.fr/csolve/frs.pdf, 2005

[57] S. Fischler, “Irrationalité de valeurs de zêta [d'après Apéry, Rivoal, ...]”, Astérisque, 294 (2004), 27–62 | MR | Zbl

[58] S. Fischler, W. Zudilin, “A refinement of Nesterenko's linear independence criterion with applications to zeta values”, Math. Ann., 347:4 (2010), 739–763 | DOI | MR | Zbl

[59] P. J. Forrester, M. L. Glasser, “Some new lattice sums including an exact result for the electrostatic potential within the Na Cl lattice”, J. Phys. A Math. Gen., 15 (1982), 911–914 | DOI | MR

[60] J. Franel, “On a question of Laisant”, L'intermédiaire des mathématiciens, 1, Gauthier-Villars, Paris, 1894, 45–47; “On a question of J. Franel”, L'intermédiaire des mathématiciens, 2, Gauthier-Villars, Paris, 1895, 33–35

[61] G. Gasper, M. Rahman, Basic hypergeometric series, 2nd ed., Encyclopedia Math. Appl., 96, Cambridge Univ. Press, Cambridge, 2004 ; Р“. ГаспРμСЂ, Рњ. Р Р°С...ман, БазисныРμ РіРёРїРμСЂРіРμРѕРјРμтричРμСЃРєРёРμ СЂСЏРґС‹, РњРёСЂ, Рњ., 1993 | DOI | MR | Zbl | MR | Zbl

[62] A. O. Gel'fond, Calculus of finite differences, Intern. Monographs Adv. Math. Phys., Hindustan Publishing Corp., Delhi, 1971 | MR | MR | Zbl | Zbl

[63] M. L. Glasser, “Evaluation of lattice sums. IV. A five-dimensional sum”, J. Phys. A Math. Gen., 16 (1975), 1237–1238 | DOI | MR | Zbl

[64] R. L. Graham, D. E. Knuth, O. Patashnik, Concrete mathematics. A foundation for computer science, 2nd ed., Addison-Wesley, Reading, MA, 1994 ; Р . ГрэС...РμРј, Р”. РљРЅСѓС‚, Рћ. Паташник, РљРѕРЅРєСЂРμтная матРμматика. ОснованиРμ информатики, РњРёСЂ, Рњ., 1998 | MR | Zbl

[65] J. Guillera, “Some binomial series obtained by the WZ-method”, Adv. in Appl. Math., 29:4 (2002), 599–603 | DOI | MR | Zbl

[66] J. Guillera, “About a new kind of Ramanujan-type series”, Experiment. Math., 12:4 (2003), 507–510 | MR | Zbl

[67] J. Guillera, “Hypergeometric identities for 10 extended Ramanujan-type series”, Ramanujan J., 15:2 (2008), 219–234 | DOI | MR | Zbl

[68] J. Guillera, “A new Ramanujan-like series for $1/\pi^2$”, Preprint at , 2010 <tt>arXiv: 1003.1915 [math.NT]</tt>

[69] J. Guillera, “A matrix form of Ramanujan-type series fo $1/\pi$”, Gems in Experimental Mathematics, Contemp. Math., 517, eds. T. Amdeberhan, L. A. Medina, and V. H. Moll, Amer. Math. Soc., Providence, RI, 2010, 189–206 | Zbl

[70] J. Guillera, “Mosaic supercongruences of Ramanujan type”, Preprint at , 2010 <tt>arXiv: 1007.2290 [math.NT]</tt>

[71] J. Guillera, W. Zudilin, “Divergent" Ramanujan-type supercongruences”, Proc. Amer. Math. Soc. (to appear); Preprint at , 2010 <tt>arXiv: 1004.4337 [math.NT]</tt>

[72] L. A. Gutnik, “Ob irratsionalnosti nekotorykh velichin, soderzhaschikh $\zeta(3)$”, UMN, 34:3 (1979), 190 ; Acta Arith., 42:3 (1983), 255–264 ; L. A. Gutnik, “On the irrationality of some quantities containing $\zeta(3)$”, Eleven papers translated from the Russian, Amer. Math. Soc. Transl. Ser. 2, 140, Amer. Math. Soc., Providence, RI, 1988, 45–55 | MR | Zbl | MR | Zbl | MR

[73] A. J. Guttmann, “Lattice Green functions and Calabi–Yau differential equations”, J. Phys. A Math. Theor., 42:23 (2009), 232001, 6 pp | DOI | MR | Zbl

[74] L. Habsieger, “Explicit lower bounds for $\|(3/2)^k\|$”, Acta Arith., 106 (2003), 299–309 | DOI | MR | Zbl

[75] M. Hata, “Legendre type polynomials and irrationality measures”, J. Reine Angew. Math., 407:1 (1990), 99–125 | DOI | MR | Zbl

[76] M. Hata, “A new irrationality measure for $\zeta(3)$”, Acta Arith., 92:1 (2000), 47–57 | MR | Zbl

[77] T. Hessami Pilehrood, “On the linear independence of vectors with polylogarithmic coordinates”, Moscow Univ. Math. Bull., 54:6 (1999), 40–42 | MR | Zbl

[78] F. Jouhet, E. Mosaki, “Irrationalité aux entiers impairs positifs d'un $q$-analogue de la fonction zêta de Riemann”, Intern. J. Number Theory, 6:5 (2010), 959–988 | DOI | MR | Zbl

[79] C. Krattenthaler, T. Rivoal, Hypergéométrie et fonction zêta de Riemann, Mem. Amer. Math. Soc., 186, Amer. Math. Soc., Providence, RI, 2007, no. 875 | MR | Zbl

[80] C. Krattenthaler, T. Rivoal, “An identity of Andrews, multiple integrals, and very-well-poised hypergeometric series”, Ramanujan J., 13 (2007), 203–219 | DOI | MR | Zbl

[81] C. Krattenthaler, T. Rivoal, “On a linear form for Catalan's constant”, South East Asian J. Math. Sci., 6:2 (2008), 3–15 | MR | Zbl

[82] C. Krattenthaler, T. Rivoal, “On the integrality of the Taylor coefficients of mirror maps”, Duke Math. J., 151:2 (2010), 175–218 ; “On the integrality of the Taylor coefficients of mirror maps. II”, Commun. Number Theory Phys., 3:3 (2009), 555–591 | DOI | MR | Zbl | MR | Zbl

[83] C. Krattenthaler, T. Rivoal, “Multivariate $p$-adic formal congruences and integrality of Taylor coefficients of mirror maps”, Théories galoisiennes et arithmétiques des équations différentielles, Séminaires et Congrès, eds. L. Di Vizio and T. Rivoal, Soc. Math. France, Paris (to appear); Preprint at , 2008 <tt>arXiv: 0804.3049 [math.NT]</tt>

[84] C. Krattenthaler, T. Rivoal, W. Zudilin, “Séries hypergéométriques basiques, $q$-analogues des valeurs de la fonction zêta et formes modulaires”, Inst. Jussieu Math. J., 5:1 (2006), 53–79 | DOI | MR | Zbl

[85] J. Kubina, M. Wunderlich, “Extending Waring's conjecture up to $471600000$”, Math. Comp., 55 (1990), 815–820 | DOI | MR | Zbl

[86] N. Kurokawa, H. Ochiai, “Mahler measures via crystalization”, Comment. Math. Univ. St. Pauli, 54:2 (2005), 121–137 | MR | Zbl

[87] M. N. Lalín, M. D. Rogers, “Functional equations for Mahler measures of genus-one curves”, Algebra Number Theory, 1:1 (2007), 87–117 | DOI | MR | Zbl

[88] D. H. Lehmer, “Factorization of certain cyclotomic functions”, Ann. of Math. (2), 34:3 (1933), 461–479 | DOI | MR | Zbl

[89] B. H. Lian, S.-T. Yau, “Differential equations from mirror symmetry”, Surveys in differential geometry: differential geometry inspired by string theory, Surv. Differ. Geom., 5, Intern. Press, Boston, MA, 1999, 510–526 | MR | Zbl

[90] F. Lindemann, “Über die Zahl $\pi$”, Math. Ann., 20:2 (1882), 213–225 | DOI | MR | Zbl

[91] H. Maass, Siegel's modular forms and Dirichlet series, Lecture Notes in Math., 216, Springer-Verlag, Berlin–New York, 1971 | MR | Zbl

[92] K. Mahler, “On the fractional parts of powers of real numbers”, Mathematika, 4:2 (1957), 122–124 | DOI | MR | Zbl

[93] K. Mahler, “An application of Jensen's formula to polynomials”, Mathematika, 7:2 (1960), 98–100 | DOI | MR | Zbl

[94] K. Mahler, “On algebraic differential equations satisfied by automorphic functions”, J. Austral. Math. Soc., 10 (1969), 445–450 | DOI | MR | Zbl

[95] V. Maillot, Géométrie d'Arakelov des variétés toriques et fibrés en droites intégrables, Mém. Soc. Math. France (N. S.), 80, Soc. Math. France, Paris, 2000 | MR | Zbl

[96] Y. Martin, K. Ono, “Eta-quotients and elliptic curves”, Proc. Amer. Math Soc., 125:11 (1997), 3169–3176 | DOI | MR | Zbl

[97] T. Matalo-Aho, K. Väänänen, W. Zudilin, “New irrationality measures for $q$-logarithms”, Math. Comp., 75:254 (2006), 879–889 | DOI | MR | Zbl

[98] A. Mellit, “Elliptic dilogarithms and parallel lines”, Preprint, 2009

[99] H. Movasati, “Eisenstein type series for Calabi–Yau varieties”, Preprint at , 2010 <tt>arXiv: 1007.4181 [math.AG]</tt>

[100] Yu. V. Nesterenko, “Linear independence of numbers”, Moscow Univ. Math. Bull., 40:1 (1985), 69–74 | MR | Zbl

[101] Yu. V. Nesterenko, “Some remarks on $\zeta(3)$”, Math. Notes, 59:6 (1996), 625–636 | DOI | MR | Zbl

[102] Yu. V. Nesterenko, “Modular functions and transcendence questions”, Sb. Math., 187:9 (1996), 1319–1348 | DOI | MR | Zbl

[103] E. M. Nikishin, “Irrationality of values of functions $F(x,s)$”, Math. USSR Sb., 37:3 (1979), 381–388 | DOI | MR | Zbl

[104] K. Nishioka, “A conjecture of Mahler on automorphic functions”, Arch. Math., 53:1 (1989), 46–51 | DOI | MR | Zbl

[105] M. Petkovšek, H. S. Wilf, D. Zeilberger, $A=B$, A K Peters, Wellesley, 1996 | MR | Zbl

[106] A. van der Poorten, “A proof that Euler missed... Apéry's proof of the irrationality of $\zeta(3)$”, Math. Intelligencer, 1:4 (1978/79), 195–203 | DOI | MR | Zbl

[107] K. Postelmans, W. Van Assche, “Irrationality of $\zeta_q(1)$ and $\zeta_q(2)$”, J. Number Theory, 126 (2007), 119–154 | DOI | MR | Zbl

[108] M. Prévost, “A new proof of the irrationality of $\zeta(3)$ using Padé approximants”, J. Comput. Appl. Math., 67 (1996), 219–235 | DOI | MR | Zbl

[109] Yu. A. Pupyrev, “Linear and algebraic independence of $q$-zeta values”, Math. Notes, 78:4 (2005), 563–568 | DOI | MR | Zbl

[110] Yu. A. Pupyrev, “Effectivization of a lower bound for $\|(4/3)^k\|$”, Math. Notes, 85:6 (2009), 877–885 | DOI | MR | Zbl

[111] S. Ramanujan, “Modular equations and approximations to $\pi$”, Quart. J. Math. Oxford Ser. (2), 45 (1914), 350–372 ; Reprinted: Collected papers of Srinivasa Ramanujan, eds. G. H. Hardy, P. V. Sechu Aiyar, and B. M. Wilson, Cambridge University Press Chelsea Publ., New York, 1962, 23–39 | Zbl | MR | Zbl

[112] G. Rhin, C. Viola, “On a permutation group related to $\zeta(2)$”, Acta Arith., 77:1 (1996), 23–56 | MR | Zbl

[113] G. Rhin, C. Viola, “The group structure for $\zeta(3)$”, Acta Arith., 97:3 (2001), 269–293 | DOI | MR | Zbl

[114] O. Richter, “On transformation laws for theta functions”, Rocky Mountain J. Math., 34:4 (2004), 1473–1481 | DOI | MR | Zbl

[115] B. Riman, “O chisle prostykh chisel, ne prevyshayuschikh dannoi velichiny”, Sochineniya, OGIZ, M., 1948, 216–224; B. Riemann, “Ueber die Anzahl der Primzahlen unter einer gegebenen Grösse”, Monatsberichte der Berliner Akademie, 1859; Reprint: Gesammelte Werke, Teubner, Leipzig, 1892

[116] T. Rivoal, “La fonction zêta de Riemann prend une infinité de valeurs irrationnelles aux entiers impairs”, C. R. Acad. Sci. Paris Sér. I Math., 331:4 (2000), 267–270 | DOI | MR | Zbl

[117] T. Rivoal, Propriétés diophantiennes des valeurs de la fonction zêta de Riemann aux entiers impairs, Thèse de Doctorat, Univ. de Caen, Caen, 2001

[118] T. Rivoal, “Irrationalité d'au moins un des neuf nombres $\zeta(5),\zeta(7),\dots,\zeta(21)$”, Acta Arith., 103 (2002), 157–167 | DOI | MR | Zbl

[119] T. Rivoal, W. Zudilin, “Diophantine properties of numbers related to Catalan's constant”, Math. Ann., 326:4 (2003), 705–721 | DOI | MR | Zbl

[120] F. Rodríguez-Villegas, “Modular Mahler measures I”, Topics in number theory (University Park, PA, 1997), Math. Appl., 467, Kluwer Acad. Publ., Dordrecht, 1999, 17–48 | MR | Zbl

[121] F. Rodríguez-Villegas, “Identities between Mahler measures”, Number theory for the millennium, III, A K Peters, Natick, MA, 2002, 223–229 | MR | Zbl

[122] F. Rodríguez-Villegas, R. Toledano, J. D. Vaaler, “Estimates for Mahler's measure of a linear form”, Proc. Edinburgh Math. Soc., 47:2 (2004), 473–494 | DOI | MR | Zbl

[123] M. D. Rogers, “Hypergeometric formulas for lattice sums and Mahler measures”, Intern. Math. Res. Not. (to appear)

[124] M. D. Rogers, W. Zudilin, “From $L$-series of elliptic curves to Mahler measures”, Preprint at , 2010 <tt>arXiv: 1012.3036 [math.NT]</tt>

[125] M. D. Rogers, W. Zudilin, “On the Mahler measure of $1+X+1/X+Y+1/Y$”, Preprint at , 2011 <tt>arXiv: 1102.1153 [math.NT]</tt>

[126] E. A. Rukhadze, “Lower estimate for rational approximations of $\ln2$”, Moscow Univ. Math. Bull., 42:6 (1987), 30–35 | MR | Zbl | Zbl

[127] A. L. Schmidt, “Generalized $q$-Legendre polynomials”, J. Comput. Appl. Math., 49:1-3 (1993), 243–249 | DOI | MR | Zbl

[128] A. L. Schmidt, “Legendre transforms and Apéry's sequences”, J. Austral. Math. Soc. Ser. A, 58:3 (1995), 358–375 | DOI | MR | Zbl

[129] A. B. Shidlovskii, Transcendental numbers, de Gruyter Stud. Math., 12, Walter de Gruyter Co., Berlin, 1989 | MR | MR | Zbl | Zbl

[130] L. J. Slater, Generalized hypergeometric functions, Cambridge Univ. Press, Cambridge, 1966 | MR | Zbl

[131] C. Smet, W. Van Assche, “Irrationality proof of a $q$-extension of $\zeta(2)$ using little $q$-Jacobi polynomials”, Acta Arith., 138:2 (2009), 165–178 | DOI | MR | Zbl

[132] V. N. Sorokin, “Hermite–Padé approximations for Nikishin systems and the irrationality of $\zeta(3)$”, Russian Math. Surveys, 49:2 (1994), 176–177 | DOI | MR | Zbl

[133] V. N. Sorokin, “A transcendence measure for $\pi^2$”, Sb. Math., 187:12 (1996), 1819–1852 | DOI | MR | Zbl

[134] V. N. Sorokin, “On Apéry's theorem”, Moscow Univ. Math. Bull., 53:3 (1998), 48–52 | MR | Zbl

[135] V. N. Sorokin, “Cyclic graphs and Apéry's theorem”, Russian Math. Surveys, 57:3 (2002), 535–571 | DOI | MR | Zbl

[136] V. Strehl, “Binomial identities — combinatorial and algorithmic aspects,”, Discrete Math., 136:1-3 (1994), 309–346 | DOI | MR | Zbl

[137] Z.-W. Sun, “Supercongruences and Euler sums”, Preprint at , 2010 <tt>arXiv: 1001.4453 [math.NT]</tt>

[138] Y. Tachiya, “Irrationality of certain Lambert series”, Tokyo J. Math., 27:1 (2004), 75–85 | DOI | MR | Zbl

[139] W. Van Assche, “Little $q$-Legendre polynomials and irrationality of certain Lambert series”, Ramanujan J., 5 (2001), 295–310 | DOI | MR | Zbl

[140] O. N. Vasilenko, “Nekotorye formuly dlya znacheniya dzeta-funktsii Rimana v tselykh tochkakh”, Teoriya chisel i ee prilozheniya (Tashkent, 26–28 sentyabrya 1990 g.), Tezisy dokladov Respublikanskoi nauchno-teoreticheskoi konferentsii, Tashkentskii gos. ped. institut, Tashkent, 1990, 27

[141] D. V. Vasil'ev, “Some formulas for the Riemann zeta function at integer points”, Moscow Univ. Math. Bull., 51:1 (1996), 41–43 | MR | Zbl | Zbl

[142] D. V. Vasilyev, On small linear forms for the values of the Riemann zeta-function at odd points, Preprint No 1 (558), Nat. Acad. Sci. Belarus, Institute Math., Minsk, 2001

[143] R. C. Vaughan, The Hardy–Littlewood method, 2nd ed., Cambridge Tracts in Math., 125, Cambridge Univ. Press, Cambridge, 1997 ; Р . Р’РѕРЅ, РњРμтод Харди–Литтлвуда, РњРёСЂ, Рњ., 1985 | MR | Zbl | MR | Zbl

[144] C. Viola, “Birational transformations and values of the Riemann zeta-function”, J. Théor. Nombres Bordeaux, 15:2 (2003), 561–592 | MR | Zbl

[145] A. A. Karatsuba, S. M. Voronin, The Riemann zeta-function, de Gruyter Exp. Math., 5, Walter de Gruyter Co., Berlin, 1992 | MR | MR | Zbl | Zbl

[146] S. O. Warnaar, W. Zudilin, “A $q$-rious positivity”, Aequat. Math., 81:1-2 (2011), 177–183 | DOI

[147] F. J. W. Whipple, “A group of generalized hypergeometric series: relations between 120 allied series of the type $F[a,b,c;d,e]$”, Proc. London Math. Soc. (2), 23 (1925), 104–114 | DOI | Zbl

[148] F. J. W. Whipple, “On well-poised series, generalized hypergeometric series having parameters in pairs, each pair with the same sum”, Proc. London Math. Soc. (2), 24 (1926), 247–263 | DOI | Zbl

[149] H. S. Wilf, D. Zeilberger, “An algorithmic proof theory for hypergeometric (ordinary and "$q$") multisum/integral identities”, Invent. Math., 108:3 (1992), 575–633 | DOI | MR | Zbl

[150] Y. Yang, “Apéry limits and special values of $L$-functions”, J. Math. Anal. Appl., 343:1 (2008), 492–513 | DOI | MR | Zbl

[151] Y. Yang, W. Zudilin, “An $\operatorname{Sp}_4$ modularity of Picard–Fuchs differential equations for Calabi–Yau threefolds”, with an appendix by V. Pasol, Gems in Experimental Mathematics, Contemp. Math., 517, eds. T. Amdeberhan, L. A. Medina, and V. H. Moll, Amer. Math. Soc., Providence, RI, 2010, 381–413 | Zbl

[152] M. Yoshida, Fuchsian differential equations. With special emphasis on the Gauss–Schwarz theory, Aspects Math., E11, Friedr. Vieweg Sohn, Braunschweig, 1987 | MR | Zbl

[153] D. Zagier, “The non-holomorphic embedding of $\mathfrak H$ into $\mathfrak H_2$”, Unpublished note, 2008

[154] D. Zagier, “Integral solutions of Apéry-like recurrence equations”, Groups and Symmetries: From Neolithic Scots to John McKay, CRM Proc. Lecture Notes, 47, Amer. Math. Soc., Providence, RI, 2009, 349–366 | MR | Zbl

[155] D. Zeilberger, “Computerized deconstruction”, Adv. Appl. Math., 31 (2003), 532–543 | DOI | MR | Zbl

[156] S. A. Zlobin, “Integrals expressible as linear forms in generalized polylogarithms”, Math. Notes, 71:5 (2002), 711–716 | DOI | MR | Zbl

[157] S. A. Zlobin, “On some integral identities”, Russian Math. Surveys, 57:3 (2002), 617–618 | DOI | MR | Zbl

[158] S. A. Zlobin, “Rhin integrals”, Math. Notes, 81:2 (2007), 201–212 | DOI | MR | Zbl

[159] I. J. Zucker, “Madelung constants and lattice sums for hexagonal crystals”, J. Phys. A Math. Gen., 24:4 (1991), 873–879 | DOI | MR | Zbl

[160] W. Zudilin, “Difference equations and the irrationality measure of numbers”, Proc. Steklov Inst. Math., 218 (1997), 160–174 | MR | Zbl

[161] W. Zudilin, “Number theory casting a look at the mirror”, Preprint at , 2000 <tt>arXiv: math.NT/0008237</tt>

[162] W. Zudilin, “One of the numbers $\zeta(5)$, $\zeta(7)$, $\zeta(9)$, $\zeta(11)$ is irrational”, Russian Math. Surveys, 56:4 (2001), 774–776 | DOI | MR | Zbl

[163] W. Zudilin, “Irrationality of values of the Riemann zeta function”, Izv. Math., 66:3 (2002), 489–542 | DOI | MR | Zbl

[164] W. Zudilin, “Remarks on irrationality of $q$-harmonic series”, Manuscripta Math., 107:4 (2002), 463–477 | DOI | MR | Zbl

[165] W. Zudilin, “On the irrationality measure for a $q$-analogue of $\zeta(2)$”, Sb. Math., 193:8 (2002), 1151–1172 | DOI | MR | Zbl

[166] W. Zudilin, “Very well-poised hypergeometric series and multiple integrals”, Russian Math. Surveys, 57:4 (2002), 824–826 | DOI | MR | Zbl

[167] W. Zudilin, “A third-order Apéry-like recursion for $\zeta(5)$”, Math. Notes, 72:5 (2002), 733–737 | DOI | MR | Zbl

[168] W. Zudilin, “Diophantine problems for $q$-zeta values”, Math. Notes, 72:6 (2002), 858–862 | DOI | MR | Zbl

[169] W. Zudilin, “The hypergeometric equation and Ramanujan functions”, Ramanujan J., 7:4 (2003), 435–447 | DOI | MR | Zbl

[170] W. Zudilin, “On the functional transcendence of $q$-zeta values”, Math. Notes, 73:4 (2003), 588–589 | DOI | MR | Zbl

[171] W. Zudilin, “Well-poised hypergeometric service for diophantine problems of zeta values”, J. Théor. Nombres Bordeaux, 15:2 (2003), 593–626 | MR | Zbl

[172] W. Zudilin, “Heine's basic transform and a permutation group for $q$-harmonic series”, Acta Arith., 111:2 (2004), 153–164 | DOI | MR | Zbl

[173] W. Zudilin, “Arithmetic of linear forms involving odd zeta values”, J. Théor. Nombres Bordeaux, 16:1 (2004), 251–291 | MR | Zbl

[174] W. Zudilin, “Well-poised hypergeometric transformations of Euler-type multiple integrals”, J. London Math. Soc., 70:1 (2004), 215–230 | DOI | MR | Zbl

[175] W. Zudilin, “Binomial sums related to rational approximations to $\zeta(4)$”, Math. Notes, 75:4 (2004), 594–597 | DOI | MR | Zbl

[176] W. Zudilin, “On a combinatorial problem of Asmus Schmidt”, Electron. J. Combin., 11:1 (2004), #R22, 8 pages | MR | Zbl

[177] W. Zudilin, “The inverse Legendre transform of a certain family of sequences”, Math. Notes, 76:2 (2004), 276–279 | DOI | MR | Zbl

[178] J. Math. Sci. (N. Y.), 137:2 (2006), 4673–4683 | DOI | MR | Zbl

[179] W. Zudilin, “A new lower bound for $\|(3/2)^k\|$”, J. Théor. Nombres Bordeaux, 19:1 (2007), 313–325 | MR | Zbl

[180] W. Zudilin, “Approximations to -, di- and tri-logarithms”, J. Comput. Appl. Math., 202:2 (2007), 450–459 | DOI | MR | Zbl

[181] W. Zudilin, “Ramanujan-type formulae for $1/\pi$: A second wind?”, Modular Forms and String Duality, Fields Inst. Commun. Ser., 54, Amer. Math. Soc. Fields Inst., Providence, RI, 2008, 179–188 | MR | Zbl

[182] W. Zudilin, “Apéry's theorem. Thirty years after”, Intern. J. Math. Computer Sci., 4:1 (2009), 9–19 | MR | Zbl

[183] W. Zudilin, “Ramanujan-type supercongruences”, J. Number Theory, 129:8 (2009), 1848–1857 | DOI | MR | Zbl