Mots-clés : Dehn–Sommerville relations, universal $G$-polynomial
@article{RM_2011_66_2_a2,
author = {V. M. Buchstaber and N. Yu. Erokhovets},
title = {Polytopes, {Fibonacci} numbers, {Hopf} algebras, and quasi-symmetric functions},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {271--367},
year = {2011},
volume = {66},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2011_66_2_a2/}
}
TY - JOUR AU - V. M. Buchstaber AU - N. Yu. Erokhovets TI - Polytopes, Fibonacci numbers, Hopf algebras, and quasi-symmetric functions JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2011 SP - 271 EP - 367 VL - 66 IS - 2 UR - http://geodesic.mathdoc.fr/item/RM_2011_66_2_a2/ LA - en ID - RM_2011_66_2_a2 ER -
%0 Journal Article %A V. M. Buchstaber %A N. Yu. Erokhovets %T Polytopes, Fibonacci numbers, Hopf algebras, and quasi-symmetric functions %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2011 %P 271-367 %V 66 %N 2 %U http://geodesic.mathdoc.fr/item/RM_2011_66_2_a2/ %G en %F RM_2011_66_2_a2
V. M. Buchstaber; N. Yu. Erokhovets. Polytopes, Fibonacci numbers, Hopf algebras, and quasi-symmetric functions. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 66 (2011) no. 2, pp. 271-367. http://geodesic.mathdoc.fr/item/RM_2011_66_2_a2/
[1] V. M. Buchstaber, N. Ray, “An invitation to toric topology: Vertex four of a remarkable tetrahedron”, Toric topology, Contemp. Math., 460, Amer. Math. Soc., Providence, RI, 2008, 1–27 | MR | Zbl
[2] V. M. Buchstaber, “Ring of simple polytopes and differential equations”, Proc. Steklov Inst. Math., 263:1 (2008), 13–37 | DOI | MR | Zbl
[3] V. M. Buchstaber, N. Yu. Erokhovets, “Algebra of operators on the ring of polytopes and quasi-symmetric functions”, Russian Math. Surveys, 65:2 (2010), 381–383 | DOI | MR | Zbl
[4] V. M. Buchstaber, N. Erokhovets, Ring of polytopes, quasi-symmetric functions and Fibonacci numbers, arXiv: 1002.0810
[5] V. M. Buchstaber, N. Erokhovets, Polytopes, Hopf algebras and quasi-symmetric functions, arXiv: 1011.1536v1
[6] B. Grünbaum, Convex polytopes, Grad. Texts in Math., 221, Springer-Verlag, New York, 2003, xvi+468 pp. | MR | Zbl
[7] G. M. Ziegler, Lectures on polytopes, Grad. Texts in Math., 152, Springer-Verlag, New York, 1995, x+370 pp. | MR | Zbl
[8] A. Brondsted, An introduction to convex polytopes, Grad. Texts in Math., 90, Springer-Verlag, New York–Heidelberg–Berlin, 1983, viii+160 pp. | MR | MR | Zbl | Zbl
[9] V. M. Bukhshtaber, T. E. Panov, Toricheskie deistviya v topologii i kombinatorike, MTsNMO, M., 2004, 272 pp. | MR | Zbl
[10] S. A. Joni, G.-C. Rota, “Coalgebras and bialgebras in combinatorics”, Stud. Appl. Math., 61:2 (1979), 93–139 | MR | Zbl
[11] W. R. Schmitt, “Antipodes and incidence coalgebras”, J. Combin. Theory Ser. A, 46:1–2 (1987), 264–290 | DOI | MR | Zbl
[12] W. R. Schmitt, “Incidence Hopf algebras”, J. Pure Appl. Algebra, 96:3 (1994), 299–330 | DOI | MR | Zbl
[13] R. Ehrenborg, “On posets and Hopf algebras”, Adv. Math., 119:1 (1996), 1–25 | DOI | MR | Zbl
[14] M. Aguiar, N. Bergeron, F. Sottile, “Combinatorial Hopf algebras and generalized Dehn–Sommerville relations”, Compos. Math., 142:1 (2006), 1–30 ; arXiv: math/0310016 | DOI | MR | Zbl
[15] N. Ray, W. Schmitt, “Combinatorial models for coalgebraic structures”, Adv. Math., 138:2 (1998), 211–262 | DOI | MR | Zbl
[16] H. S. M. Coxeter, Regular polytopes, 3rd edition, Dover Publications, New York, 1973 | MR | Zbl
[17] M. M. Bayer, L. J. Billera, “Generalized Dehn–Sommerville relations for polytopes, spheres and Eulerian partially ordered sets”, Invent. Math., 79:1 (1985), 143–157 | DOI | MR | Zbl
[18] J. Milnor, J. Moore, “On the structure of Hopf algebras”, Ann. of Math. (2), 81:2 (1965), 211–264 | DOI | MR | Zbl
[19] Ch. Kassel, Quantum groups, Grad. Texts in Math., 155, Springer-Verlag, New York, 1995 | MR | Zbl
[20] M. Hazewinkel, “The algebra of quasi-symmetric functions is free over the integers”, Adv. Math., 164:2 (2001), 283–300 | DOI | MR | Zbl
[21] A. Baker, B. Richter, “Quasisymmetric functions from a topological point of view”, Math. Scand., 103:2 (2008), 208–242 | MR | Zbl
[22] K. T. Chen, R. H. Fox, R. C. Lyndon, “Free differential calculus. IV. The quotient groups of the lower central series”, Ann. of Math. (2), 68:1 (1958), 81–95 | DOI | MR | Zbl
[23] R. P. Stanley, Ordered structures and partitions, Mem. Amer. Math. Soc., 119, Amer. Math. Soc., Providence, RI, 1972, iii+104 pp. | MR | Zbl
[24] I. M. Gessel, “Multipartite $P$-partitions and inner product of skew Schur functions”, Combinatorics and algebra (Boulder, CO, 1983), Contemp. Math., 34, Amer. Math. Soc., Providence, RI, 1984, 289–317 | MR | Zbl
[25] I. M. Gelfand, D. Krob, A. Lascoux, B. Leclerc, V. S. Retakh, J.-Y. Thibon, “Noncommutative symmetric functions”, Adv. Math., 112:2 (1995), 218–348 | DOI | MR | Zbl
[26] C. Malvenuto, C. Reutenauer, “Duality between quasi-symmetric functions and the Solomon descent algebra”, J. Algebra, 177:3 (1995), 967–982 | DOI | MR | Zbl
[27] M. Hazewinkel, “Generalized overlapping shuffle algebras”, J. Math. Sci., 106:4 (2001), 3168–3186, New York | DOI | MR | Zbl
[28] J. R. Stembridge, “Enriched $p$-partitions”, Trans. Amer. Math. Soc., 349:2 (1997), 763–788 | DOI | MR | Zbl
[29] J.-Y. Thibon, B.-C.-V. Ung, “Quantum quasi-symmetric functions and Hecke algebras”, J. Phys. A, 29:22 (1996), 7337–7348 | DOI | MR | Zbl
[30] B. I. Botvinnik, V. M. Buchstaber, S. P. Novikov, S. A. Yuzvinsky, “Algebraic aspects of the theory of multiplications in complex cobordism theory”, Russian Math. Surveys, 55:4 (2000), 613–633 | DOI | MR | Zbl
[31] L. J. Billera, N. Liu, “Non-commutative enumeration in graded posets”, J. Algebraic Combin., 12:1 (2000), 7–24 | DOI | MR | Zbl
[32] S. P. Novikov, “Various doublings of Hopf algebras. Operator algebras on quantum groups, complex cobordisms”, Russian Math. Surveys, 47:5 (1992), 198–199 | DOI | MR | Zbl
[33] C. Reutenauer, Free Lie algebras, London Math. Soc. Monogr. (N.S.), 4, The Clarendon Press, Oxford Univ. Press, New York, 1993, xviii+269 pp. | MR | Zbl
[34] Combinatorics on words, Encyclopedia Math. Appl., 17, ed. M. Lothaire, Addison-Wesley, Reading, MA, 1983, xix+238 pp. | MR | Zbl
[35] R. Bott, H. Samelson, “On the Pontryagin product in spaces of paths”, Comment. Math. Helv., 27 (1953), 320–337 | DOI | MR | Zbl
[36] V. M. Buchstaber, J. Grbic, Lie–Hopf algebras and loop homology of suspension spaces, arXiv: 1011.2549
[37] R. P. Stanley, “Generalized $h$-vectors, intersection cohomology of toric varieties, and related results”, Commutative algebra and combinatorics (Kyoto, 1985), Adv. Stud. Pure Math., 11, North-Holland, Amsterdam, 1987, 187–213 | MR | Zbl
[38] L. J. Billera, S. K. Hsiao, S. van Willigenburg, “Peak quasisymmetric functions and Eulerian enumeration”, Adv. Math., 176:2 (2003), 248–276 ; 24 June 2007, arXiv: 0706.3486v1 | DOI | MR | Zbl
[39] M. M. Bayer, R. Ehrenborg, “The toric $h$-vector of partially ordered sets”, Trans. Amer. Math. Soc., 352:10 (2000), 4515–4531 | DOI | MR | Zbl
[40] G. Kalai, “A new basis for polytopes”, J. Combin. Theory Ser. A, 49:2 (1988), 191–209 | DOI | MR | Zbl
[41] M. M. Bayer, A. Klapper, “A new index for polytopes”, Discrete Comput. Geom., 6:1 (1991), 33–47 | DOI | MR | Zbl
[42] M. M. Bayer, C. W. Lee, “Combinatorial aspects of convex polytopes”, Handbook of convex geometry, A, North-Holland, Amsterdam, 1993, 485–534 | MR | Zbl
[43] J. Fine, A complete $h$-vector for convex polytopes, arXiv: 0911.5722
[44] J. Fine, A complete $g$-vector for convex polytopes, arXiv: 1001.1562
[45] C. W. Lee, Sweeping the $cd$-index and the toric $h$-vector, 2009 ; arXiv: www.ms.uky.edu/\allowbreakl̃ee/cd.pdf1011.2264
[46] C. Stenson, “Relationships among flag $f$-vector inequalities for polytopes”, Discrete Comput. Geom., 31:2 (2004), 257–273 | DOI | MR | Zbl
[47] P. McMullen, “The numbers of faces of simplicial polytopes”, Israel J. Math., 9:4 (1971), 559–570 | DOI | MR | Zbl
[48] R. P. Stanley, “The number of faces of simplicial convex polytope”, Adv. in Math., 35:3 (1980), 236–238 | DOI | MR | Zbl
[49] L. J. Billera, C. W. Lee, “A proof of sufficiency of McMullen's conditions for $f$-vectors of simplicial polytopes”, J. Combin. Theory Ser. A, 31:3 (1981), 237–255 | DOI | MR | Zbl
[50] P. McMullen, “On simple polytopes”, Invent. Math., 113:2 (1993), 419–444 | DOI | MR | Zbl
[51] K.-H. Fieseler, “Rational intersection cohomology of projective toric varieties”, J. Reine Angew. Math., 413 (1991), 88–98 | DOI | MR | Zbl
[52] K. Karu, “Hard Lefschetz theorem for nonrational polytopes”, Invent. Math., 157:2 (2004), 419–447 ; arXiv: math/0112087 | DOI | MR | Zbl
[53] G. M. Ziegler, “Face numbers of $4$-polytopes and $3$-spheres”, Proceedings of the International Congress of Mathematicians (Beijing, China, 2002), III, Higher Ed. Press, Beijing, 2002, 625–634 ; arXiv: math/0208073 | MR | Zbl
[54] L. J. Billera, G. Hetyei, “Linear inequalities for flags in graded partially ordered sets”, J. Combin. Theory Ser. A, 89:1 (2000), 77–104 ; arXiv: math/9706220 | DOI | MR | Zbl
[55] N. Bergeron, S. Mykytiuk, F. Sottile, S. van Willigenburg, “Shifted quasi-symmetric functions and the Hopf algebra of peak functions”, Discrete Math., 246:1-3 (2002), 57–66 | DOI | MR | Zbl
[56] N. Bergeron, S. Mykytiuk, F. Sottile, S. van Willigenburg, “Noncommutative Pieri operators on posets”, J. Combin. Theory Ser. A, 91:1–2 (2000), 84–110 ; arXiv: math/0002073 | DOI | MR | Zbl
[57] R. P. Stanley, “Flag $f$-vectors and the $cd$-index”, Math. Z., 216:1 (1994), 483–499 | DOI | MR | Zbl
[58] L. J. Billera, R. Ehrenborg, “Monotonicity of the $cd$-index for polytopes”, Math. Z., 233 (2000), 421–441 | DOI | MR | Zbl
[59] L. J. Billera, R. Ehrenborg, M. Readdy, “The $cd$-index of zonotopes and arrangements”, Mathematical essays in honor of Gian-Carlo Rota (Cambridge, MA, 1996), Progr. Math., 161, Birkhäuser, Boston, 1998, 23–40 | MR | Zbl
[60] R. Ehrenborg, H. Fox, “Inequalities for $cd$-indices of joins and products of polytopes”, Combinatorica, 23:3 (2003), 427–452 | DOI | MR | Zbl
[61] R. Ehrenborg, M. Readdy, “Coproducts and the $cd$-index”, J. Algebraic Combin., 8:3 (1998), 273–299 | DOI | MR | Zbl
[62] K. Karu, “The $cd$-index of fans and posets”, Compos. Math., 142:3 (2006), 701–718 | DOI | MR | Zbl