Polytopes, Fibonacci numbers, Hopf algebras, and quasi-symmetric functions
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 66 (2011) no. 2, pp. 271-367 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This survey is devoted to the classical problem of flag numbers of convex polytopes, and contains an exposition of results obtained on the basis of connections between the theory of convex polytopes and a number of modern directions of research. Bibliography: 62 titles.
Keywords: flag numbers, flag polynomials, Leibniz–Hopf algebra, Lyndon words, $\boldsymbol{cd}$-index.
Mots-clés : Dehn–Sommerville relations, universal $G$-polynomial
@article{RM_2011_66_2_a2,
     author = {V. M. Buchstaber and N. Yu. Erokhovets},
     title = {Polytopes, {Fibonacci} numbers, {Hopf} algebras, and quasi-symmetric functions},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {271--367},
     year = {2011},
     volume = {66},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2011_66_2_a2/}
}
TY  - JOUR
AU  - V. M. Buchstaber
AU  - N. Yu. Erokhovets
TI  - Polytopes, Fibonacci numbers, Hopf algebras, and quasi-symmetric functions
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2011
SP  - 271
EP  - 367
VL  - 66
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/RM_2011_66_2_a2/
LA  - en
ID  - RM_2011_66_2_a2
ER  - 
%0 Journal Article
%A V. M. Buchstaber
%A N. Yu. Erokhovets
%T Polytopes, Fibonacci numbers, Hopf algebras, and quasi-symmetric functions
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2011
%P 271-367
%V 66
%N 2
%U http://geodesic.mathdoc.fr/item/RM_2011_66_2_a2/
%G en
%F RM_2011_66_2_a2
V. M. Buchstaber; N. Yu. Erokhovets. Polytopes, Fibonacci numbers, Hopf algebras, and quasi-symmetric functions. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 66 (2011) no. 2, pp. 271-367. http://geodesic.mathdoc.fr/item/RM_2011_66_2_a2/

[1] V. M. Buchstaber, N. Ray, “An invitation to toric topology: Vertex four of a remarkable tetrahedron”, Toric topology, Contemp. Math., 460, Amer. Math. Soc., Providence, RI, 2008, 1–27 | MR | Zbl

[2] V. M. Buchstaber, “Ring of simple polytopes and differential equations”, Proc. Steklov Inst. Math., 263:1 (2008), 13–37 | DOI | MR | Zbl

[3] V. M. Buchstaber, N. Yu. Erokhovets, “Algebra of operators on the ring of polytopes and quasi-symmetric functions”, Russian Math. Surveys, 65:2 (2010), 381–383 | DOI | MR | Zbl

[4] V. M. Buchstaber, N. Erokhovets, Ring of polytopes, quasi-symmetric functions and Fibonacci numbers, arXiv: 1002.0810

[5] V. M. Buchstaber, N. Erokhovets, Polytopes, Hopf algebras and quasi-symmetric functions, arXiv: 1011.1536v1

[6] B. Grünbaum, Convex polytopes, Grad. Texts in Math., 221, Springer-Verlag, New York, 2003, xvi+468 pp. | MR | Zbl

[7] G. M. Ziegler, Lectures on polytopes, Grad. Texts in Math., 152, Springer-Verlag, New York, 1995, x+370 pp. | MR | Zbl

[8] A. Brondsted, An introduction to convex polytopes, Grad. Texts in Math., 90, Springer-Verlag, New York–Heidelberg–Berlin, 1983, viii+160 pp. | MR | MR | Zbl | Zbl

[9] V. M. Bukhshtaber, T. E. Panov, Toricheskie deistviya v topologii i kombinatorike, MTsNMO, M., 2004, 272 pp. | MR | Zbl

[10] S. A. Joni, G.-C. Rota, “Coalgebras and bialgebras in combinatorics”, Stud. Appl. Math., 61:2 (1979), 93–139 | MR | Zbl

[11] W. R. Schmitt, “Antipodes and incidence coalgebras”, J. Combin. Theory Ser. A, 46:1–2 (1987), 264–290 | DOI | MR | Zbl

[12] W. R. Schmitt, “Incidence Hopf algebras”, J. Pure Appl. Algebra, 96:3 (1994), 299–330 | DOI | MR | Zbl

[13] R. Ehrenborg, “On posets and Hopf algebras”, Adv. Math., 119:1 (1996), 1–25 | DOI | MR | Zbl

[14] M. Aguiar, N. Bergeron, F. Sottile, “Combinatorial Hopf algebras and generalized Dehn–Sommerville relations”, Compos. Math., 142:1 (2006), 1–30 ; arXiv: math/0310016 | DOI | MR | Zbl

[15] N. Ray, W. Schmitt, “Combinatorial models for coalgebraic structures”, Adv. Math., 138:2 (1998), 211–262 | DOI | MR | Zbl

[16] H. S. M. Coxeter, Regular polytopes, 3rd edition, Dover Publications, New York, 1973 | MR | Zbl

[17] M. M. Bayer, L. J. Billera, “Generalized Dehn–Sommerville relations for polytopes, spheres and Eulerian partially ordered sets”, Invent. Math., 79:1 (1985), 143–157 | DOI | MR | Zbl

[18] J. Milnor, J. Moore, “On the structure of Hopf algebras”, Ann. of Math. (2), 81:2 (1965), 211–264 | DOI | MR | Zbl

[19] Ch. Kassel, Quantum groups, Grad. Texts in Math., 155, Springer-Verlag, New York, 1995 | MR | Zbl

[20] M. Hazewinkel, “The algebra of quasi-symmetric functions is free over the integers”, Adv. Math., 164:2 (2001), 283–300 | DOI | MR | Zbl

[21] A. Baker, B. Richter, “Quasisymmetric functions from a topological point of view”, Math. Scand., 103:2 (2008), 208–242 | MR | Zbl

[22] K. T. Chen, R. H. Fox, R. C. Lyndon, “Free differential calculus. IV. The quotient groups of the lower central series”, Ann. of Math. (2), 68:1 (1958), 81–95 | DOI | MR | Zbl

[23] R. P. Stanley, Ordered structures and partitions, Mem. Amer. Math. Soc., 119, Amer. Math. Soc., Providence, RI, 1972, iii+104 pp. | MR | Zbl

[24] I. M. Gessel, “Multipartite $P$-partitions and inner product of skew Schur functions”, Combinatorics and algebra (Boulder, CO, 1983), Contemp. Math., 34, Amer. Math. Soc., Providence, RI, 1984, 289–317 | MR | Zbl

[25] I. M. Gelfand, D. Krob, A. Lascoux, B. Leclerc, V. S. Retakh, J.-Y. Thibon, “Noncommutative symmetric functions”, Adv. Math., 112:2 (1995), 218–348 | DOI | MR | Zbl

[26] C. Malvenuto, C. Reutenauer, “Duality between quasi-symmetric functions and the Solomon descent algebra”, J. Algebra, 177:3 (1995), 967–982 | DOI | MR | Zbl

[27] M. Hazewinkel, “Generalized overlapping shuffle algebras”, J. Math. Sci., 106:4 (2001), 3168–3186, New York | DOI | MR | Zbl

[28] J. R. Stembridge, “Enriched $p$-partitions”, Trans. Amer. Math. Soc., 349:2 (1997), 763–788 | DOI | MR | Zbl

[29] J.-Y. Thibon, B.-C.-V. Ung, “Quantum quasi-symmetric functions and Hecke algebras”, J. Phys. A, 29:22 (1996), 7337–7348 | DOI | MR | Zbl

[30] B. I. Botvinnik, V. M. Buchstaber, S. P. Novikov, S. A. Yuzvinsky, “Algebraic aspects of the theory of multiplications in complex cobordism theory”, Russian Math. Surveys, 55:4 (2000), 613–633 | DOI | MR | Zbl

[31] L. J. Billera, N. Liu, “Non-commutative enumeration in graded posets”, J. Algebraic Combin., 12:1 (2000), 7–24 | DOI | MR | Zbl

[32] S. P. Novikov, “Various doublings of Hopf algebras. Operator algebras on quantum groups, complex cobordisms”, Russian Math. Surveys, 47:5 (1992), 198–199 | DOI | MR | Zbl

[33] C. Reutenauer, Free Lie algebras, London Math. Soc. Monogr. (N.S.), 4, The Clarendon Press, Oxford Univ. Press, New York, 1993, xviii+269 pp. | MR | Zbl

[34] Combinatorics on words, Encyclopedia Math. Appl., 17, ed. M. Lothaire, Addison-Wesley, Reading, MA, 1983, xix+238 pp. | MR | Zbl

[35] R. Bott, H. Samelson, “On the Pontryagin product in spaces of paths”, Comment. Math. Helv., 27 (1953), 320–337 | DOI | MR | Zbl

[36] V. M. Buchstaber, J. Grbic, Lie–Hopf algebras and loop homology of suspension spaces, arXiv: 1011.2549

[37] R. P. Stanley, “Generalized $h$-vectors, intersection cohomology of toric varieties, and related results”, Commutative algebra and combinatorics (Kyoto, 1985), Adv. Stud. Pure Math., 11, North-Holland, Amsterdam, 1987, 187–213 | MR | Zbl

[38] L. J. Billera, S. K. Hsiao, S. van Willigenburg, “Peak quasisymmetric functions and Eulerian enumeration”, Adv. Math., 176:2 (2003), 248–276 ; 24 June 2007, arXiv: 0706.3486v1 | DOI | MR | Zbl

[39] M. M. Bayer, R. Ehrenborg, “The toric $h$-vector of partially ordered sets”, Trans. Amer. Math. Soc., 352:10 (2000), 4515–4531 | DOI | MR | Zbl

[40] G. Kalai, “A new basis for polytopes”, J. Combin. Theory Ser. A, 49:2 (1988), 191–209 | DOI | MR | Zbl

[41] M. M. Bayer, A. Klapper, “A new index for polytopes”, Discrete Comput. Geom., 6:1 (1991), 33–47 | DOI | MR | Zbl

[42] M. M. Bayer, C. W. Lee, “Combinatorial aspects of convex polytopes”, Handbook of convex geometry, A, North-Holland, Amsterdam, 1993, 485–534 | MR | Zbl

[43] J. Fine, A complete $h$-vector for convex polytopes, arXiv: 0911.5722

[44] J. Fine, A complete $g$-vector for convex polytopes, arXiv: 1001.1562

[45] C. W. Lee, Sweeping the $cd$-index and the toric $h$-vector, 2009 ; arXiv: www.ms.uky.edu/\allowbreakl̃ee/cd.pdf1011.2264

[46] C. Stenson, “Relationships among flag $f$-vector inequalities for polytopes”, Discrete Comput. Geom., 31:2 (2004), 257–273 | DOI | MR | Zbl

[47] P. McMullen, “The numbers of faces of simplicial polytopes”, Israel J. Math., 9:4 (1971), 559–570 | DOI | MR | Zbl

[48] R. P. Stanley, “The number of faces of simplicial convex polytope”, Adv. in Math., 35:3 (1980), 236–238 | DOI | MR | Zbl

[49] L. J. Billera, C. W. Lee, “A proof of sufficiency of McMullen's conditions for $f$-vectors of simplicial polytopes”, J. Combin. Theory Ser. A, 31:3 (1981), 237–255 | DOI | MR | Zbl

[50] P. McMullen, “On simple polytopes”, Invent. Math., 113:2 (1993), 419–444 | DOI | MR | Zbl

[51] K.-H. Fieseler, “Rational intersection cohomology of projective toric varieties”, J. Reine Angew. Math., 413 (1991), 88–98 | DOI | MR | Zbl

[52] K. Karu, “Hard Lefschetz theorem for nonrational polytopes”, Invent. Math., 157:2 (2004), 419–447 ; arXiv: math/0112087 | DOI | MR | Zbl

[53] G. M. Ziegler, “Face numbers of $4$-polytopes and $3$-spheres”, Proceedings of the International Congress of Mathematicians (Beijing, China, 2002), III, Higher Ed. Press, Beijing, 2002, 625–634 ; arXiv: math/0208073 | MR | Zbl

[54] L. J. Billera, G. Hetyei, “Linear inequalities for flags in graded partially ordered sets”, J. Combin. Theory Ser. A, 89:1 (2000), 77–104 ; arXiv: math/9706220 | DOI | MR | Zbl

[55] N. Bergeron, S. Mykytiuk, F. Sottile, S. van Willigenburg, “Shifted quasi-symmetric functions and the Hopf algebra of peak functions”, Discrete Math., 246:1-3 (2002), 57–66 | DOI | MR | Zbl

[56] N. Bergeron, S. Mykytiuk, F. Sottile, S. van Willigenburg, “Noncommutative Pieri operators on posets”, J. Combin. Theory Ser. A, 91:1–2 (2000), 84–110 ; arXiv: math/0002073 | DOI | MR | Zbl

[57] R. P. Stanley, “Flag $f$-vectors and the $cd$-index”, Math. Z., 216:1 (1994), 483–499 | DOI | MR | Zbl

[58] L. J. Billera, R. Ehrenborg, “Monotonicity of the $cd$-index for polytopes”, Math. Z., 233 (2000), 421–441 | DOI | MR | Zbl

[59] L. J. Billera, R. Ehrenborg, M. Readdy, “The $cd$-index of zonotopes and arrangements”, Mathematical essays in honor of Gian-Carlo Rota (Cambridge, MA, 1996), Progr. Math., 161, Birkhäuser, Boston, 1998, 23–40 | MR | Zbl

[60] R. Ehrenborg, H. Fox, “Inequalities for $cd$-indices of joins and products of polytopes”, Combinatorica, 23:3 (2003), 427–452 | DOI | MR | Zbl

[61] R. Ehrenborg, M. Readdy, “Coproducts and the $cd$-index”, J. Algebraic Combin., 8:3 (1998), 273–299 | DOI | MR | Zbl

[62] K. Karu, “The $cd$-index of fans and posets”, Compos. Math., 142:3 (2006), 701–718 | DOI | MR | Zbl