@article{RM_2011_66_2_a0,
author = {A. A. Karatsuba},
title = {A property of the set of prime numbers},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {209--220},
year = {2011},
volume = {66},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2011_66_2_a0/}
}
A. A. Karatsuba. A property of the set of prime numbers. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 66 (2011) no. 2, pp. 209-220. http://geodesic.mathdoc.fr/item/RM_2011_66_2_a0/
[1] E. Landau, “Über die Anzahl der Gitterpunkte in gewissen Bereichen”, Gött. Nachr., 1912, 687–770 | Zbl
[2] E. Landau, Handbuch der Lehre von der Verteilung der Primzahlen, 2, Teubner, Leipzig, 1909 | MR | Zbl
[3] Loo-Keng Hua, Die Abschätzung von Exponentialsummen und ihre Anwendung in der Zahlentheorie, Enzyklopädie Math. Wiss., I, Teubner, Leipzig, 1959, 123 pp. | MR | MR | Zbl | Zbl
[4] M. E. Changa, “Numbers whose prime divisors lie in special intervals”, Izv. Math., 67:4 (2003), 837–848 | DOI | MR | Zbl
[5] M. E. Changa, Arifmeticheskie zadachi s chislami, vse prostye deliteli kotorykh prinadlezhat spetsialnym mnozhestvam, Dis. $\dots$ dokt. fiz.-matem. nauk, MIAN, M., 2004
[6] M. E. Changa, “On sums of multiplicative functions over numbers all of whose prime divisors belong to given arithmetic progressions”, Izv. Math., 69:2 (2005), 423–438 | DOI | MR | Zbl
[7] K. Prachar, Primzahlverteilung, Springer-Verlag, Berlin–Göttingen–Heidelberg, 1957, x+415 pp. | MR | MR | Zbl | Zbl
[8] A. A. Karatsuba, Basic analytic number theory, Springer-Verlag, Berlin, 1993, xiv+222 pp. | MR | MR | Zbl | Zbl
[9] A. A. Karatsuba, Complex analysis in number theory, CRC Press, Boca Raton, FL, 1995, x+187 pp. | MR | Zbl
[10] A. A. Karatsuba, S. M. Voronin, The Riemann zeta-function, de Gruyter Exp. Math., 5, Walter de Gruyter, Berlin, 1992, xii+396 pp. | MR | MR | Zbl | Zbl