A property of the set of prime numbers
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 66 (2011) no. 2, pp. 209-220 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A phenomenon of interdependency between the structure of positive integers and the form of their prime factors is discovered. This paper was prepared for publication by E. A. Karatsuba and M. E. Changa, based on A. A. Karatsuba's drafts and notes from 2007–2008. Details of calculations are due to Changa. Bibliography: 10 titles.
Keywords: prime factors, arithmetic progressions.
@article{RM_2011_66_2_a0,
     author = {A. A. Karatsuba},
     title = {A property of the set of prime numbers},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {209--220},
     year = {2011},
     volume = {66},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2011_66_2_a0/}
}
TY  - JOUR
AU  - A. A. Karatsuba
TI  - A property of the set of prime numbers
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2011
SP  - 209
EP  - 220
VL  - 66
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/RM_2011_66_2_a0/
LA  - en
ID  - RM_2011_66_2_a0
ER  - 
%0 Journal Article
%A A. A. Karatsuba
%T A property of the set of prime numbers
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2011
%P 209-220
%V 66
%N 2
%U http://geodesic.mathdoc.fr/item/RM_2011_66_2_a0/
%G en
%F RM_2011_66_2_a0
A. A. Karatsuba. A property of the set of prime numbers. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 66 (2011) no. 2, pp. 209-220. http://geodesic.mathdoc.fr/item/RM_2011_66_2_a0/

[1] E. Landau, “Über die Anzahl der Gitterpunkte in gewissen Bereichen”, Gött. Nachr., 1912, 687–770 | Zbl

[2] E. Landau, Handbuch der Lehre von der Verteilung der Primzahlen, 2, Teubner, Leipzig, 1909 | MR | Zbl

[3] Loo-Keng Hua, Die Abschätzung von Exponentialsummen und ihre Anwendung in der Zahlentheorie, Enzyklopädie Math. Wiss., I, Teubner, Leipzig, 1959, 123 pp. | MR | MR | Zbl | Zbl

[4] M. E. Changa, “Numbers whose prime divisors lie in special intervals”, Izv. Math., 67:4 (2003), 837–848 | DOI | MR | Zbl

[5] M. E. Changa, Arifmeticheskie zadachi s chislami, vse prostye deliteli kotorykh prinadlezhat spetsialnym mnozhestvam, Dis. $\dots$ dokt. fiz.-matem. nauk, MIAN, M., 2004

[6] M. E. Changa, “On sums of multiplicative functions over numbers all of whose prime divisors belong to given arithmetic progressions”, Izv. Math., 69:2 (2005), 423–438 | DOI | MR | Zbl

[7] K. Prachar, Primzahlverteilung, Springer-Verlag, Berlin–Göttingen–Heidelberg, 1957, x+415 pp. | MR | MR | Zbl | Zbl

[8] A. A. Karatsuba, Basic analytic number theory, Springer-Verlag, Berlin, 1993, xiv+222 pp. | MR | MR | Zbl | Zbl

[9] A. A. Karatsuba, Complex analysis in number theory, CRC Press, Boca Raton, FL, 1995, x+187 pp. | MR | Zbl

[10] A. A. Karatsuba, S. M. Voronin, The Riemann zeta-function, de Gruyter Exp. Math., 5, Walter de Gruyter, Berlin, 1992, xii+396 pp. | MR | MR | Zbl | Zbl