Lax operator algebras and Hamiltonian integrable hierarchies
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 66 (2011) no. 1, pp. 145-171 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper considers the theory of Lax equations with a spectral parameter on a Riemann surface, proposed by Krichever in 2001. The approach here is based on new objects, the Lax operator algebras, taking into consideration an arbitrary complex simple or reductive classical Lie algebra. For every Lax operator, regarded as a map sending a point of the cotangent bundle on the space of extended Tyurin data to an element of the corresponding Lax operator algebra, a hierarchy of mutually commuting flows given by the Lax equations is constructed, and it is proved that they are Hamiltonian with respect to the Krichever–Phong symplectic structure. The corresponding Hamiltonians give integrable finite-dimensional Hitchin-type systems. For example, elliptic $A_n$, $C_n$, and $D_n$ Calogero–Moser systems are derived in the framework of our approach. Bibliography: 13 titles.
Keywords: infinite-dimensional Lie algebras, current algebras, Lax integrable systems, Hamiltonian theory.
@article{RM_2011_66_1_a4,
     author = {O. K. Sheinman},
     title = {Lax operator algebras and {Hamiltonian} integrable hierarchies},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {145--171},
     year = {2011},
     volume = {66},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2011_66_1_a4/}
}
TY  - JOUR
AU  - O. K. Sheinman
TI  - Lax operator algebras and Hamiltonian integrable hierarchies
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2011
SP  - 145
EP  - 171
VL  - 66
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/RM_2011_66_1_a4/
LA  - en
ID  - RM_2011_66_1_a4
ER  - 
%0 Journal Article
%A O. K. Sheinman
%T Lax operator algebras and Hamiltonian integrable hierarchies
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2011
%P 145-171
%V 66
%N 1
%U http://geodesic.mathdoc.fr/item/RM_2011_66_1_a4/
%G en
%F RM_2011_66_1_a4
O. K. Sheinman. Lax operator algebras and Hamiltonian integrable hierarchies. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 66 (2011) no. 1, pp. 145-171. http://geodesic.mathdoc.fr/item/RM_2011_66_1_a4/

[1] I. M. Krichever, S. P. Novikov, “Holomorphic bundles on algebraic curves and nonlinear equations”, Russian Math. Surveys, 35:6 (1980), 53–79 | DOI | MR | Zbl | Zbl

[2] I. M. Krichever, S. P. Novikov, “Holomorphic bundles over Riemann surfaces and the Kadomtsev–Petviashvili equation. I”, Funct. Anal. Appl., 12:4 (1978), 276–286 | DOI | MR | Zbl

[3] I. M. Krichever, “Commutative rings of ordinary linear differential operators”, Funct. Anal. Appl., 12:3 (1978), 175–185 | DOI | MR | Zbl

[4] I. M. Krichever, “Vector bundles and Lax equations on algebraic curves”, Comm. Math. Phys., 229:2 (2002), 229–269 | DOI | MR | Zbl

[5] I. M. Krichever, O. K. Sheĭnman, “Lax operator algebras”, Funct. Anal. Appl., 41:4 (2007), 284–294 ; arXiv: math/0701648 | DOI | MR

[6] O. K. Sheinman, “On certain current algebras related to finite-zone integration”, Geometry, topology, and mathematical physics, Amer. Math. Soc. Transl. Ser. 2, 224, eds. V. M. Buchstaber, I. M. Krichever, Amer. Math. Soc., Providence, RI, 2008, 271–284 | MR | Zbl

[7] O. K. Sheinman, “Lax operator algebras and integrable hierarchies”, Proc. Steklov Inst. Math., 263 (2008), 204–213 | DOI | MR | Zbl

[8] A. N. Tyurin, “Klassifikatsiya vektornykh rassloenii nad algebraicheskoi krivoi proizvolnogo roda”, Izv. AN SSSR. Ser. matem., 29:3 (1965), 657–688 | MR | Zbl

[9] O. K. Sheinman, “Affine Krichever–Novikov algebras, their representations and applications”, Geometry, topology, and mathematical physics, S. P. Novikov's seminar (Moscow, 2002–2003), Amer. Math. Soc. Transl. Ser. 2, 212, Amer. Math. Soc., Providence, RI, 2004, 297–316 ; arXiv: math/0304020 | MR | Zbl

[10] M. Schlichenmaier, O. K. Sheinman, “Central extensions of Lax operator algebras”, Russian Math. Surveys, 63:4 (2008), 727–766 | DOI | MR | Zbl

[11] I. M. Krichever, “Elliptic solutions of the Kadomtsev–Petviashvili equation and integrable systems of particles”, Funct. Anal. Appl., 14:4 (1980), 282–290 | DOI | MR | Zbl

[12] E. D'Hocker, D. H. Phong, Calogero–Moser Lax pairs with spectral parameter for general Lie algebras, arXiv: hep-th/9804124

[13] I. M. Krichever, S. P. Novikov, “Algebras of Virasoro type, Riemann surfaces and structures of the theory of solitons”, Funct. Anal. Appl., 21:2 (1987), 126–142 | DOI | MR | Zbl