Lax operator algebras and Hamiltonian integrable hierarchies
    
    
  
  
  
      
      
      
        
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 66 (2011) no. 1, pp. 145-171
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			This paper considers the theory of Lax equations with a spectral parameter on a Riemann surface, proposed by Krichever in 2001. The approach here is based on new objects, the Lax operator algebras, taking into consideration an arbitrary complex simple or reductive classical Lie algebra. For every Lax operator, regarded as a map sending a point of the cotangent bundle on the space of extended Tyurin data to an element of the corresponding Lax operator algebra, a hierarchy of mutually commuting flows given by the Lax equations is constructed, and it is proved that they are Hamiltonian with respect to the Krichever–Phong symplectic structure. The corresponding Hamiltonians give integrable finite-dimensional Hitchin-type systems. For example, elliptic $A_n$, $C_n$, and $D_n$ Calogero–Moser systems are derived in the framework of our approach.
Bibliography: 13 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
infinite-dimensional Lie algebras, current algebras, Lax integrable systems, Hamiltonian theory.
                    
                    
                    
                  
                
                
                @article{RM_2011_66_1_a4,
     author = {O. K. Sheinman},
     title = {Lax operator algebras and {Hamiltonian} integrable hierarchies},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {145--171},
     publisher = {mathdoc},
     volume = {66},
     number = {1},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2011_66_1_a4/}
}
                      
                      
                    O. K. Sheinman. Lax operator algebras and Hamiltonian integrable hierarchies. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 66 (2011) no. 1, pp. 145-171. http://geodesic.mathdoc.fr/item/RM_2011_66_1_a4/
