Singular spectral curves in finite-gap integration
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 66 (2011) no. 1, pp. 107-144 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A number of examples of applications of the method of finite-gap integration of non-linear equations are considered in which singular spectral curves occur. In particular, constructions of orthogonal curvilinear coordinate systems for which a reducible spectral curve consists of rational components are discussed, along with constructions of finite-gap Frobenius manifolds, and a soliton deformation of spectral curves is demonstrated which consists in the creation and annihilation of singular points and corresponds to equations with self-consistent sources. Bibliography: 52 titles.
Keywords: finite-gap integration, non-linear equations, Riemann surfaces, singular algebraic curves.
@article{RM_2011_66_1_a3,
     author = {I. A. Taimanov},
     title = {Singular spectral curves in finite-gap integration},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {107--144},
     year = {2011},
     volume = {66},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2011_66_1_a3/}
}
TY  - JOUR
AU  - I. A. Taimanov
TI  - Singular spectral curves in finite-gap integration
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2011
SP  - 107
EP  - 144
VL  - 66
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/RM_2011_66_1_a3/
LA  - en
ID  - RM_2011_66_1_a3
ER  - 
%0 Journal Article
%A I. A. Taimanov
%T Singular spectral curves in finite-gap integration
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2011
%P 107-144
%V 66
%N 1
%U http://geodesic.mathdoc.fr/item/RM_2011_66_1_a3/
%G en
%F RM_2011_66_1_a3
I. A. Taimanov. Singular spectral curves in finite-gap integration. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 66 (2011) no. 1, pp. 107-144. http://geodesic.mathdoc.fr/item/RM_2011_66_1_a3/

[1] A. E. Mironov, I. A. Taimanov, “Orthogonal curvilinear coordinate systems corresponding to singular spectral curves”, Proc. Steklov Inst. Math., 255:1 (2006), 169–184 | DOI | MR

[2] A. E. Mironov, I. A. Taimanov, “Some algebraic examples of Frobenius manifolds”, Theoret. and Math. Phys., 151:2 (2007), 604–613 | DOI | MR | Zbl

[3] P. G. Grinevich, I. A. Taimanov, “Infinitesimal Darboux transformations of the spectral curves of tori in the four-space”, Int. Math. Res. Not. IMRN, 2007, no. 2, rnm005, 22 pp. | DOI | MR | Zbl

[4] P. G. Grinevich, I. A. Taimanov, “Spectral conservation laws for periodic nonlinear equations of the Melnikov type”, Geometry, topology, and mathematical physics, Amer. Math. Soc. Transl. Ser. 2, 224, Amer. Math. Soc., Providence, RI, 2008, 125–138 ; arXiv: 0801.4143 | MR | Zbl

[5] I. M. Krichever, “Algebraic-geometric $n$-orthogonal curvilinear coordinate systems and solutions of the associativity equations”, Funct. Anal. Appl., 31:1 (1997), 25–39 | DOI | MR | Zbl

[6] S. P. Novikov, “The periodic problem for the Korteweg–de Vries equation”, Funct. Anal. Appl., 8:3 (1974), 236–246 | DOI | MR | Zbl

[7] B. A. Dubrovin, I. M. Krichever, S. P. Novikov, “The Schrödinger equation in a periodic field and Riemann surfaces”, Soviet Math. Dokl., 17 (1976), 947–951 | MR | Zbl

[8] B. A. Dubrovin, V. B. Matveev, S. P. Novikov, “Non-linear equations of Korteweg–de Vries type, finite-zone linear operators, and Abelian varieties”, Russian Math. Surveys, 31:1 (1976), 59–146 | DOI | MR | Zbl | Zbl

[9] I. M. Krichever, “Methods of algebraic geometry in the theory of non-linear equations”, Russian Math. Surveys, 32:6 (1977), 185–213 | DOI | MR | Zbl | Zbl

[10] I. M. Krichever, S. P. Novikov, “Holomorphic bundles over algebraic curves and non-linear equations”, Russian Math. Surveys, 35:6 (1980), 53–79 | DOI | MR | Zbl | Zbl

[11] B. A. Dubrovin, “Theta functions and non-linear equations”, Russian Math. Surveys, 36:2 (1981), 11–92 | DOI | MR | Zbl

[12] I. M. Krichever, “Spectral theory of two-dimensional periodic operators and its applications”, Russian Math. Surveys, 44:2 (1989), 145–225 | DOI | MR | Zbl

[13] I. A. Taimanov, “Two-dimensional Dirac operator and the theory of surfaces”, Russian Math. Surveys, 61:1 (2006), 79–159 | DOI | MR | Zbl

[14] I. A. Taimanov, “The Weierstrass representation of closed surfaces in $\mathbb R^3$”, Funct. Anal. Appl., 32:4 (1998), 258–267 | DOI | MR | Zbl

[15] I. A. Taimanov, “Modified Novikov–Veselov equation and differential geometry of surfaces”, Solitons, geometry, and topology: on the crossroad, Amer. Math. Soc. Transl. Ser. 2, 179, Amer. Math. Soc., Providence, RI, 1997, 133–151 | MR | Zbl

[16] I. M. Krichever, “Algebraic-geometric construction of the Zakharov–Shabat equations and their periodic solutions”, Soviet Math. Dokl., 17 (1976), 39–397 | Zbl

[17] J.-P. Serre, Groupes algébriques et corps de classes, Actualités scientifiques et industrielles, 1264, Publications de l'Institut de mathématique de l'Université de Nancago, VII, Hermann, Paris, 1959, 202 pp. | MR | Zbl | Zbl

[18] B. A. Dubrovin, T. M. Malanyuk, I. M. Krichever, V. G. Makhankov, “Exact solutions of the time-dependent Schrödinger equation with self-consistent potentials”, Soviet J. Particles and Nuclei, 19:3 (1988), 252–269 | MR

[19] I. A. Taimanov, “On two-dimensional finite-gap potential Schrödinger and Dirac operators with singular spectral curves”, Siberian Math. J., 44:4 (2003), 686–694 | DOI | MR | Zbl

[20] T. M. Malanyuk, “A class of exact solutions of the Kadomtsev–Petviashvili equation”, Russian Math. Surveys, 46:3 (1991), 225–227 | DOI | MR | Zbl | Zbl

[21] B. A. Dubrovin, S. P. Novikov, “Hamiltonian formalism of one-dimensional systems of the hydrodynamic type and the Bogolyubov–Whitham averaging method”, Soviet Math. Dokl., 27:3 (1983), 665–669 | MR | Zbl

[22] S. P. Novikov, “The geometry of conservative systems of hydrodynamic type. The method of averaging for field-theoretical systems”, Russian Math. Surveys, 40:4 (1985), 85–98 | DOI | MR | Zbl

[23] B. A. Dubrovin, S. P. Novikov, “Hydrodynamics of weakly deformed soliton lattices. Differential geometry and Hamiltonian theory”, Russian Math. Surveys, 44:6 (1989), 35–124 | DOI | MR | Zbl

[24] V. E. Zakharov, “Description of the $n$-orthogonal curvilinear coordinate systems and Hamiltonian integrable systems of hydrodynamic type. I: Integration of the Lamé equation”, Duke Math. J., 94:1 (1998), 103–139 | DOI | MR | Zbl

[25] S. P. Tsarev, “Poisson brackets and one-dimensional Hamiltonian systems of hydrodynamic type”, Soviet Math. Dokl., 31:3 (1985), 488–491 | MR | Zbl

[26] B. A. Dubrovin, “Differential geometry of strongly integrable systems of hydrodynamic type”, Funct. Anal. Appl., 24:4 (1990), 280–285 | DOI | MR | Zbl

[27] M. V. Pavlov, “Integrability of the Egorov systems of hydrodynamic type”, Theoret. Math. Phys., 150:2 (2007), 225–243 | DOI | MR | Zbl

[28] O. I. Mokhov, E. V. Ferapontov, “Non-local Hamiltonian operators of hydrodynamic type related to metrics of constant curvature”, Russian Math. Surveys, 45:3 (1990), 218–219 | DOI | MR | Zbl

[29] G. Darboux, Leçons sur les systèmes orthogonaux et les coordonnées curvilignes, Gauthier-Villars, Paris, 1910, vii+567 pp. | Zbl

[30] V. E. Zakharov, S. V. Manakov, “On reductions in systems integrable by the method of the inverse scattering problem”, Dokl. Math., 57:3 (1998), 471–474 | MR | Zbl

[31] D. A. Berdinskii, I. P. Rybnikov, “Ob ortogonalnykh krivolineinykh sistemakh koordinat v prostranstvakh postoyannoi krivizny”, Sib. matem. zhurn. (to appear)

[32] J. Cieśliński, A. Doliwa, P. M. Santini, “The integrable discrete analogues of orthogonal coordinate systems are multi-dimensional circular lattices”, Phys. Lett. A, 235:5 (1997), 480–488 | DOI | MR | Zbl

[33] A. A. Akhmetshin, Yu. S. Vol'vovskij, I. M. Krichever, “Discrete analogs of the Darboux–Egorov metrics”, Proc. Steklov Inst. Math., 225 (1999), 16–39 | MR | Zbl

[34] E. Witten, “On the structure of the topological phase of two-dimensional gravity”, Nuclear Phys. B, 340:2-3 (1990), 281–332 | DOI | MR

[35] R. Dijkgraaf, E. Verlinde, H. Verlinde, “Topological strings in $d1$”, Nuclear Phys. B, 352:1 (1991), 59–86 | DOI | MR

[36] B. Dubrovin, “Geometry of 2D topological field theories”, Integrable systems and quantum groups (Montecatini Terme, 1993), Lecture Notes in Math., 1620, Springer, Berlin, 1996, 120–348 | DOI | MR | Zbl

[37] B. A. Dubrovin, “Hamiltonian PDEs and Frobenius manifolds”, Russian Math. Surveys, 63:6 (2008), 999–1010 | DOI | MR | Zbl

[38] S. Barannikov, M. Kontsevich, “Frobenius manifolds and formality of Lie algebras of polyvector fields”, Int. Math. Res. Not., 1998, no. 4, 201–215 | DOI | MR | Zbl

[39] V. Shramchenko, “ ‘Real doubles’ of Hurwitz Frobenius manifolds”, Comm. Math. Phys., 256:3 (2005), 635–680 | DOI | MR | Zbl

[40] B. Dubrovin, “Integrable systems in topological field theory”, Nuclear Phys. B, 379:3 (1992), 627–689 | DOI | MR

[41] V. K. Mel'nikov, “Some new nonlinear evolution equations integrable by the inverse problem method”, Math. USSR-Sb., 49:2 (1984), 461–489 | DOI | MR | Zbl

[42] V. E. Zakharov, E. A. Kuznetsov, “Multiscale expansions in the theory of systems integrable by the inverse scattering transform”, Phys. D, 18:1-3 (1986), 455–463 | DOI | MR | Zbl

[43] V. K. Mel'nikov, “Capture and confinement of solitons in nonlinear integrable systems”, Comm. Math. Phys., 120:3 (1989), 451–468 | DOI | MR | Zbl

[44] P. G. Grinevich, M. U. Schmidt, “Conformal invariant functionals of immersions of tori into $\mathbb{R}^3$”, J. Geom. Phys., 26:1–2 (1997), 51–78 | DOI | MR | Zbl

[45] I. A. Taimanov, “Finite gap theory of the Clifford torus”, Int. Math. Res. Not., 2005, no. 2, 103–120 | DOI | MR | Zbl

[46] I. M. Krichever, “The Peierls model”, Funct. Anal. Appl., 16:4 (1982), 248–263 | DOI | MR

[47] P. G. Grinevich, A. Yu. Orlov, “Virasoro action on Riemann surfaces, Grassmannians, $\det\bar\partial_J$ and Segal–Wilson $\tau$-function”, Problems of modern quantum field theory (Alushta, 1989), Res. Rep. Phys., Springer, Berlin, 1989, 86–106 | MR

[48] P. G. Grinevich, A. E. Mironov, S. P. Novikov, “Zero level of a purely magnetic two-dimensional nonrelativistic Pauli operator for spin-1/2 particles”, Theoret. and Math. Phys., 164:3 (2010), 1110–1127 | DOI

[49] P. G. Grinevich, A. E. Mironov, S. P. Novikov, “2D-Schrödinger operator, $(2+1)$ evolution systems and new reductions, 2D-Burgers hierarchy and inverse problem data”, Russian Math. Surveys, 65:3 (2010), 580–582 | DOI | MR

[50] I. M. Krichever, “Baxter's equations and algebraic geometry”, Funct. Anal. Appl., 15:2 (1981), 92–103 | DOI | MR | Zbl | Zbl

[51] V. I. Dragovich, “Solutions of the Yang equation with rational spectral curves”, St. Petersburg Math. J., 4:5 (1993), 921–931 | MR | Zbl

[52] V. I. Dragovich, “Solutions of the Yang equation with rational irreducible spectral curves”, Russian Acad. Sci. Izv. Math., 42:1 (1994), 51–65 | DOI | MR | Zbl