On deformations of linear differential systems
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 66 (2011) no. 1, pp. 63-105 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This article concerns deformations of meromorphic linear differential systems. Problems relating to their existence and classification are reviewed, and the global and local behaviour of solutions to deformation equations in a neighbourhood of their singular set is analysed. Certain classical results established for isomonodromic deformations of Fuchsian systems are generalized to the case of integrable deformations of meromorphic systems. Bibliography: 40 titles.
Keywords: holomorphic bundle, meromorphic connection, integrability
Mots-clés : monodromy, Painlevé property, isomonodromic deformation.
@article{RM_2011_66_1_a2,
     author = {R. R. Gontsov and V. A. Poberezhnyi and G. F. Helminck},
     title = {On deformations of linear differential systems},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {63--105},
     year = {2011},
     volume = {66},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2011_66_1_a2/}
}
TY  - JOUR
AU  - R. R. Gontsov
AU  - V. A. Poberezhnyi
AU  - G. F. Helminck
TI  - On deformations of linear differential systems
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2011
SP  - 63
EP  - 105
VL  - 66
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/RM_2011_66_1_a2/
LA  - en
ID  - RM_2011_66_1_a2
ER  - 
%0 Journal Article
%A R. R. Gontsov
%A V. A. Poberezhnyi
%A G. F. Helminck
%T On deformations of linear differential systems
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2011
%P 63-105
%V 66
%N 1
%U http://geodesic.mathdoc.fr/item/RM_2011_66_1_a2/
%G en
%F RM_2011_66_1_a2
R. R. Gontsov; V. A. Poberezhnyi; G. F. Helminck. On deformations of linear differential systems. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 66 (2011) no. 1, pp. 63-105. http://geodesic.mathdoc.fr/item/RM_2011_66_1_a2/

[1] O. Forster, Riemannsche Flächen, Heidelberger Taschenbucher, 184, Springer-Verlag, Berlin–New York, 1977, x+223 pp. | MR | MR | Zbl

[2] A. A. Bolibrukh, Obratnye zadachi monodromii v analiticheskoi teorii differentsialnykh uravnenii, MTsNMO, M., 2009, 220 pp. http://biblio.mccme.ru/node/2154

[3] A. H. M. Levelt, “Hypergeometric functions. II”, Nederl. Akad. Wetensch. Proc. Ser. A, 64 (1961), 373–385 | MR | Zbl

[4] K. Iwasaki, H. Kimura, S. Shimomura, M. Yoshida, From Gauss to Painlevé. A modern theory of special functions, Aspects Math., E16, Friedr. Vieweg, Braunschweig, 1991, xii+347 pp. | MR | Zbl

[5] F. W. Warner, Foundations of differentiable manifolds and Lie groups, Grad. Texts in Math., 94, Corrected reprint of the 1971 edition, Springer-Verlag, New York–Berlin, 1983, ix+272 pp. | MR | MR | Zbl | Zbl

[6] S. Kobayashi, Differential geometry of complex vector bundles, Publ. Math. Soc. Japan, 15, Princeton Univ. Press, Princeton, NJ; Iwanami Shoten, Tokyo, 1987, xii+305 pp. | MR | Zbl

[7] R. C. Gunning, H. Rossi, Analytic functions of several complex variables, Prentice-Hall, Englewood Cliffs, NJ, 1965, xiv+317 pp. | MR | MR | Zbl | Zbl

[8] A. T. Fomenko, D. B. Fuks, Kurs gomotopicheskoi topologii, Nauka, M., 1989, 496 pp. | MR | Zbl

[9] K. Stein, “Überlagerungen holomorph-vollständiger komplexer Räume”, Arch. Math. (Basel), 7:5 (1956), 354–361 | DOI | MR | Zbl

[10] H. Grauert, “Ein Theorem der analytischen Garbentheorie und die Modulräume komplexer Strukturen”, Inst. Hautes Études Sci. Publ. Math., 5 (1960), 233–292 http://www.numdam.org/item?id=PMIHES_1960__5__5_0 | MR | Zbl

[11] M. Jimbo, T. Miwa, K. Ueno, “Monodromy preserving deformations of linear differential equations with rational coefficients. I. General theory and $\tau$-function”, Phys. D, 2:2 (1981), 306–352 | DOI | MR | Zbl

[12] B. Malgrange, “Sur les déformations isomonodromiques. II. Singularités irrégulières”, Progr. Math., 37, Birkhäuser Boston, Boston, MA, 1983, 427–438 | MR | Zbl

[13] J. Palmer, “Zeros of the Jimbo, Miwa, Ueno tau function”, J. Math. Phys., 40:12 (1999), 6638–6681 | DOI | MR | Zbl

[14] M. Bertola, M. Y. Mo, “Isomonodromic deformation of resonant rational connections”, IMRP Int. Math. Res. Pap., 2005, no. 11, 565–635 | DOI | MR | Zbl

[15] A. A. Bolibruch, “On isomonodromic deformations of Fuchsian systems”, J. Dyn. Control Syst., 3:4 (1997), 589–604 | DOI | MR | Zbl

[16] L. Schlesinger, “Über die Lösungen gewisser linearer Differentialgleichungen als Funktionen der singulären Punkte”, J. Reine Angew. Math., 129 (1905), 287–294 | DOI | Zbl

[17] L. Schlesinger, “Über eine Klasse von Differentialsystem beliebiger Ordnung mit festen kritischen Punkten”, J. Reine Angew. Math., 141 (1912), 96–145 | DOI | Zbl

[18] M. Jimbo, T. Miwa, Y. Mori, M. Sato, “Density matrix of an impenetrable Bose gas and the fifth Painlevé transcendent”, Phys. D, 1:1 (1980), 80–158 | DOI | MR | Zbl

[19] B. Malgrange, “Déformations isomonodromiques, forme de Liouville, fonction $\tau$”, Ann. Inst. Fourier (Grenoble), 54:5 (2004), 1371–1392 http://aif.cedram.org/aif-bin/item?id=AIF_2004__54_5_1371_0 | MR | Zbl

[20] A. A. Bolibrukh, “On isomonodromic confluences of Fuchsian singularities”, Proc. Steklov Inst. Math., 221 (1998), 117–132 | MR | Zbl

[21] A. V. Kitaev, “Non-Schlesinger deformations of ordinary differential equations with rational coefficients”, J. Phys. A, 34:11 (2001), 2259–2272 | DOI | MR | Zbl

[22] V. Katsnelson, D. Volok, “Deformations of Fuchsian systems of linear differential equations and the Schlesinger system”, Math. Phys. Anal. Geom., 9:2 (2006), 135–186 | DOI | MR | Zbl

[23] V. A. Poberezhnyi, “General linear problem of the isomonodromic deformation of Fuchsian systems”, Math. Notes, 81:4 (2007), 529–542 | DOI | MR | Zbl

[24] B. Malgrange, “Sur les déformations isomonodromiques. I. Singularités régulières”, Mathematics and physics (Paris, 1979/1982), Progr. Math., 37, Birkhäuser Boston, Boston, MA, 1983, 401–426 | MR | Zbl

[25] L. Boutet de Monvel, “Problème de Riemann–Hilbert. III”, Mathematics and physics (Paris, 1979/1982), Progr. Math., 37, Birkhäuser Boston, Boston, MA, 1983, 299–306 | MR | Zbl

[26] M. Atiyah, $K$-theory, W. A. Benjamin, New York–Amsterdam, 1967, 166 pp. | MR | Zbl

[27] M. Schechter, Principles of functional analysis, Academic Press, New York–London, 1971, 383 pp. | MR | Zbl

[28] G. D. Birkhoff, “A theorem on matrices of analytic functions”, Math. Ann., 74:1 (1913), 122–133 | DOI | MR | Zbl

[29] A. Grothendieck, “La théorie de Fredholm”, Bull. Soc. Math. France, 84 (1956), 319–384 | MR | Zbl

[30] G. Helminck, “Deformations of connections, the Riemann–Hilbert problem and $\tau$-functions”, Computational and combinatorial methods in system theory (Stockholm, 1985), North-Holland, Amsterdam, 1986, 75–89 | MR | Zbl

[31] M. Sato, T. Miwa, M. Jimbo, “Aspects of holonomic quantum fields. Isomonodromic deformation and Ising model”, Complex analysis, microlocal calculus and relativistic quantum theory (Proc. Internat. Colloq., Centre Phys., Les Houches, 1979), Lect. Notes in Phys., 126, Springer, Berlin, 1980, 429–491 | DOI | MR | Zbl

[32] I. V. V'yugin, “Fuchsian systems with completely reducible monodromy”, Math. Notes, 85:6 (2009), 780–786 | DOI | MR | Zbl

[33] V. Heu, “Stability of rank 2 vector bundles along isomonodromic deformations”, Math. Ann., 344:2 (2009), 463–490 | DOI | MR | Zbl

[34] R. R. Gontsov, I. V. Vyugin, “Apparent singularities of Fuchsian equations, the Painlevé VI equation, and Garnier systems”, 2009, arXiv: 0905.1436

[35] A. A. Bolibruch, “On orders of movable poles of the Schlesinger equation”, J. Dyn. Control Syst., 6:1 (2000), 57–74 | DOI | MR | Zbl

[36] A. A. Bolibrukh, “On the tau function for the Schlesinger equation of isomonodromic deformations”, Math. Notes, 74:2 (2003), 177–184 | DOI | MR | Zbl

[37] R. R. Gontsov, “On solutions of the Schlesinger equation in the neigborhood of the Malgrange $\Theta$-divisor”, Math. Notes, 83:5 (2008), 707–711 | DOI | MR | Zbl

[38] R. Garnier, “Sur des équations différentielles du troisième ordre dont l'intégrale générale est uniforme et sur une classe d'équations nouvelles d'ordre supérieur dont l'intégrale générale a ses points critiques fixes”, Ann. Sci. École Norm. Sup. (3), 29 (1912), 1–126 | MR | Zbl

[39] K. Okamoto, “Isomonodromic deformation and Painlevé equations, and the Garnier system”, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 33:3 (1986), 575–618 | MR | Zbl

[40] P. Boalch, “Symplectic manifolds and isomonodromic deformations”, Adv. Math., 163:2 (2001), 137–201 | DOI | MR | Zbl