On deformations of linear differential systems
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 66 (2011) no. 1, pp. 63-105

Voir la notice de l'article provenant de la source Math-Net.Ru

This article concerns deformations of meromorphic linear differential systems. Problems relating to their existence and classification are reviewed, and the global and local behaviour of solutions to deformation equations in a neighbourhood of their singular set is analysed. Certain classical results established for isomonodromic deformations of Fuchsian systems are generalized to the case of integrable deformations of meromorphic systems. Bibliography: 40 titles.
Keywords: holomorphic bundle, meromorphic connection, integrability, Painlevé property
Mots-clés : monodromy, isomonodromic deformation.
@article{RM_2011_66_1_a2,
     author = {R. R. Gontsov and V. A. Poberezhnyi and G. F. Helminck},
     title = {On deformations of linear differential systems},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {63--105},
     publisher = {mathdoc},
     volume = {66},
     number = {1},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2011_66_1_a2/}
}
TY  - JOUR
AU  - R. R. Gontsov
AU  - V. A. Poberezhnyi
AU  - G. F. Helminck
TI  - On deformations of linear differential systems
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2011
SP  - 63
EP  - 105
VL  - 66
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RM_2011_66_1_a2/
LA  - en
ID  - RM_2011_66_1_a2
ER  - 
%0 Journal Article
%A R. R. Gontsov
%A V. A. Poberezhnyi
%A G. F. Helminck
%T On deformations of linear differential systems
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2011
%P 63-105
%V 66
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RM_2011_66_1_a2/
%G en
%F RM_2011_66_1_a2
R. R. Gontsov; V. A. Poberezhnyi; G. F. Helminck. On deformations of linear differential systems. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 66 (2011) no. 1, pp. 63-105. http://geodesic.mathdoc.fr/item/RM_2011_66_1_a2/