Riemann–Hilbert problem for scalar Fuchsian equations and related problems
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 66 (2011) no. 1, pp. 35-62 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper is devoted to the Riemann–Hilbert problem for scalar Fuchsian equations: the problem of constructing a scalar Fuchsian equation from a representation of the monodromy and a family of singular points. The results of Bolibrukh [5], van der Put and Singer [7], and the author [10], generalized to a unified theorem provided with a new proof, form the main part of the paper. Some possible applications of these results are also discussed. Bibliography: 16 titles.
Keywords: Fuchsian equations and systems, Riemann–Hilbert problem, bundle, connection.
Mots-clés : monodromy
@article{RM_2011_66_1_a1,
     author = {I. V. Vyugin},
     title = {Riemann{\textendash}Hilbert problem for scalar {Fuchsian} equations and related problems},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {35--62},
     year = {2011},
     volume = {66},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2011_66_1_a1/}
}
TY  - JOUR
AU  - I. V. Vyugin
TI  - Riemann–Hilbert problem for scalar Fuchsian equations and related problems
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2011
SP  - 35
EP  - 62
VL  - 66
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/RM_2011_66_1_a1/
LA  - en
ID  - RM_2011_66_1_a1
ER  - 
%0 Journal Article
%A I. V. Vyugin
%T Riemann–Hilbert problem for scalar Fuchsian equations and related problems
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2011
%P 35-62
%V 66
%N 1
%U http://geodesic.mathdoc.fr/item/RM_2011_66_1_a1/
%G en
%F RM_2011_66_1_a1
I. V. Vyugin. Riemann–Hilbert problem for scalar Fuchsian equations and related problems. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 66 (2011) no. 1, pp. 35-62. http://geodesic.mathdoc.fr/item/RM_2011_66_1_a1/

[1] B. Riemann, Collected papers, Translated from the 1892 German edition, Kendrick Press, Heber City, UT, 2004, x+555 pp. | MR | Zbl

[2] D. Gilbert, Izbrannye trudy, 2, M., Faktorial, 1998, 607 pp.

[3] A. A. Bolibrukh, Obratnye zadachi monodromii v analiticheskoi teorii differentsialnykh uravnenii, MTsNMO, M., 2009, 220 pp. http://biblio.mccme.ru/node/2154

[4] A. A. Bolibrukh, “Problema Rimana–Gilberta na kompleksnoi proektivnoi pryamoi”, Matem. zametki, 46:3 (1989), 118–120 | MR | Zbl

[5] A. A. Bolibrukh, The 21st Hilbert problem for linear Fuchsian systems, Proc. Steklov Inst. Math., 206, Amer. Math. Soc., Providence, RI, 1995, viii, 145 pp. | MR | Zbl | Zbl

[6] I. V. V'yugin, R. R. Gontsov, “Additional parameters in inverse monodromy problems”, Sb. Math., 197:12 (2006), 1753–1773 | DOI | MR | Zbl

[7] M. van der Put, M. Singer, Galois theory of linear differential equations, Grundlehren Math. Wiss., 328, Springer-Verlag, Berlin, 2003, xviii+438 pp. | MR | Zbl

[8] I. V. Vyugin, “Postroenie fuksovoi sistemy po fuksovu uravneniyu”, Vestnik KGPI: Matematicheskie i estestvennye nauki, 2:3 (2007), 43–47

[9] I. V. Vyugin, R. R. Gontsov, “O postroenii sistemy lineinykh differentsialnykh uravnenii po skalyarnomu uravneniyu”, Tr. MIAN, Nauka, M., 2010 (to appear)

[10] V. I. V'yugin, “Hilbert's 21st problem for scalar Fuchsian equations”, Dokl. Math., 79:2 (2009), 203–206 | DOI | MR | Zbl

[11] P. Deligne, “Équations différentielles à points singuliers réguliers”, Lecture Notes in Math., 163 (1970), Springer-Verlag, Berlin–New York, 133 pp. | DOI | MR | Zbl

[12] A. I. Gladyshev, “On the Riemann–Hilbert problem in dimension 4”, J. Dyn. Control Syst., 6:2 (2000), 219–264 | DOI | MR | Zbl

[13] I. V. V'yugin, “Fuchsian systems with completely reducible monodromy”, Math. Notes, 85:6 (2009), 780–786 | DOI | MR | Zbl

[14] A. A. Bolibrukh, “The Riemann–Hilbert problem on a compact Riemann surface”, Proc. Steklov Inst. Math., 238 (2002), 47–60 | MR | Zbl

[15] R. R. Gontsov, V. A. Poberezhnyi, “Various versions of the Riemann–Hilbert problem for linear differential equations”, Russian Math. Surveys, 63:4 (2008), 603–639 | DOI | MR | Zbl

[16] A. A. Bolibrukh, “On the tau function for the Schlesinger equation of isomonodromic deformations”, Math. Notes, 74:2 (2003), 177–184 | DOI | MR | Zbl