Mots-clés : monodromy
@article{RM_2011_66_1_a1,
author = {I. V. Vyugin},
title = {Riemann{\textendash}Hilbert problem for scalar {Fuchsian} equations and related problems},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {35--62},
year = {2011},
volume = {66},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2011_66_1_a1/}
}
I. V. Vyugin. Riemann–Hilbert problem for scalar Fuchsian equations and related problems. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 66 (2011) no. 1, pp. 35-62. http://geodesic.mathdoc.fr/item/RM_2011_66_1_a1/
[1] B. Riemann, Collected papers, Translated from the 1892 German edition, Kendrick Press, Heber City, UT, 2004, x+555 pp. | MR | Zbl
[2] D. Gilbert, Izbrannye trudy, 2, M., Faktorial, 1998, 607 pp.
[3] A. A. Bolibrukh, Obratnye zadachi monodromii v analiticheskoi teorii differentsialnykh uravnenii, MTsNMO, M., 2009, 220 pp. http://biblio.mccme.ru/node/2154
[4] A. A. Bolibrukh, “Problema Rimana–Gilberta na kompleksnoi proektivnoi pryamoi”, Matem. zametki, 46:3 (1989), 118–120 | MR | Zbl
[5] A. A. Bolibrukh, The 21st Hilbert problem for linear Fuchsian systems, Proc. Steklov Inst. Math., 206, Amer. Math. Soc., Providence, RI, 1995, viii, 145 pp. | MR | Zbl | Zbl
[6] I. V. V'yugin, R. R. Gontsov, “Additional parameters in inverse monodromy problems”, Sb. Math., 197:12 (2006), 1753–1773 | DOI | MR | Zbl
[7] M. van der Put, M. Singer, Galois theory of linear differential equations, Grundlehren Math. Wiss., 328, Springer-Verlag, Berlin, 2003, xviii+438 pp. | MR | Zbl
[8] I. V. Vyugin, “Postroenie fuksovoi sistemy po fuksovu uravneniyu”, Vestnik KGPI: Matematicheskie i estestvennye nauki, 2:3 (2007), 43–47
[9] I. V. Vyugin, R. R. Gontsov, “O postroenii sistemy lineinykh differentsialnykh uravnenii po skalyarnomu uravneniyu”, Tr. MIAN, Nauka, M., 2010 (to appear)
[10] V. I. V'yugin, “Hilbert's 21st problem for scalar Fuchsian equations”, Dokl. Math., 79:2 (2009), 203–206 | DOI | MR | Zbl
[11] P. Deligne, “Équations différentielles à points singuliers réguliers”, Lecture Notes in Math., 163 (1970), Springer-Verlag, Berlin–New York, 133 pp. | DOI | MR | Zbl
[12] A. I. Gladyshev, “On the Riemann–Hilbert problem in dimension 4”, J. Dyn. Control Syst., 6:2 (2000), 219–264 | DOI | MR | Zbl
[13] I. V. V'yugin, “Fuchsian systems with completely reducible monodromy”, Math. Notes, 85:6 (2009), 780–786 | DOI | MR | Zbl
[14] A. A. Bolibrukh, “The Riemann–Hilbert problem on a compact Riemann surface”, Proc. Steklov Inst. Math., 238 (2002), 47–60 | MR | Zbl
[15] R. R. Gontsov, V. A. Poberezhnyi, “Various versions of the Riemann–Hilbert problem for linear differential equations”, Russian Math. Surveys, 63:4 (2008), 603–639 | DOI | MR | Zbl
[16] A. A. Bolibrukh, “On the tau function for the Schlesinger equation of isomonodromic deformations”, Math. Notes, 74:2 (2003), 177–184 | DOI | MR | Zbl