@article{RM_2010_65_6_a6,
author = {O. I. Mokhov},
title = {Riemann invariants of semisimple non-locally {bi-Hamiltonian} systems of hydrodynamic type and compatible metrics},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {1183--1185},
year = {2010},
volume = {65},
number = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2010_65_6_a6/}
}
TY - JOUR AU - O. I. Mokhov TI - Riemann invariants of semisimple non-locally bi-Hamiltonian systems of hydrodynamic type and compatible metrics JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2010 SP - 1183 EP - 1185 VL - 65 IS - 6 UR - http://geodesic.mathdoc.fr/item/RM_2010_65_6_a6/ LA - en ID - RM_2010_65_6_a6 ER -
%0 Journal Article %A O. I. Mokhov %T Riemann invariants of semisimple non-locally bi-Hamiltonian systems of hydrodynamic type and compatible metrics %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2010 %P 1183-1185 %V 65 %N 6 %U http://geodesic.mathdoc.fr/item/RM_2010_65_6_a6/ %G en %F RM_2010_65_6_a6
O. I. Mokhov. Riemann invariants of semisimple non-locally bi-Hamiltonian systems of hydrodynamic type and compatible metrics. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 65 (2010) no. 6, pp. 1183-1185. http://geodesic.mathdoc.fr/item/RM_2010_65_6_a6/
[1] E. V. Ferapontov, Funkts. analiz i ego pril., 25:3 (1991), 37–49 | MR | Zbl
[2] O. I. Mokhov, Funkts. analiz i ego pril., 35:2 (2001), 24–36 | MR | Zbl
[3] O. I. Mokhov, UMN, 55:4 (2000), 217–218 | MR | Zbl
[4] A. Nijenhuis, Indag. Math., 13:2 (1951), 200–212 | MR | Zbl
[5] B. A. Dubrovin, S. P. Novikov, Dokl. AN SSSR, 270:4 (1983), 781–785 | MR | Zbl
[6] O. I. Mokhov, E. V. Ferapontov, UMN, 45:3 (1990), 191–192 | MR | Zbl
[7] S. P. Tsarev, Izv. AN SSSR. Cer. matem., 54:5 (1990), 1048–1068 | MR | Zbl
[8] B. Dubrovin, S.-Q. Liu, Y. Zhang, Comm. Pure Appl. Math., 59:4 (2006), 559–615 | DOI | MR | Zbl
[9] O. I. Mokhov, J. Appl. Math., 2:7 (2002), 337–370 | DOI | MR | Zbl
[10] O. I. Mokhov, TMF, 138:2 (2004), 283–296, arXiv: math/0202036 | MR | Zbl