Proof of Gal's conjecture for the $D$ series of generalized associahedra
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 65 (2010) no. 6, pp. 1178-1180 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{RM_2010_65_6_a4,
     author = {M. A. Gorsky},
     title = {Proof of {Gal's} conjecture for the $D$ series of generalized associahedra},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {1178--1180},
     year = {2010},
     volume = {65},
     number = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2010_65_6_a4/}
}
TY  - JOUR
AU  - M. A. Gorsky
TI  - Proof of Gal's conjecture for the $D$ series of generalized associahedra
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2010
SP  - 1178
EP  - 1180
VL  - 65
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/RM_2010_65_6_a4/
LA  - en
ID  - RM_2010_65_6_a4
ER  - 
%0 Journal Article
%A M. A. Gorsky
%T Proof of Gal's conjecture for the $D$ series of generalized associahedra
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2010
%P 1178-1180
%V 65
%N 6
%U http://geodesic.mathdoc.fr/item/RM_2010_65_6_a4/
%G en
%F RM_2010_65_6_a4
M. A. Gorsky. Proof of Gal's conjecture for the $D$ series of generalized associahedra. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 65 (2010) no. 6, pp. 1178-1180. http://geodesic.mathdoc.fr/item/RM_2010_65_6_a4/

[1] S. Fomin, A. Zelevinsky, Ann. of Math. (2), 158:3 (2003), 977–1018 ; arXiv: hep-th/0111053 | DOI | MR | Zbl

[2] V. M. Bukhshtaber, T. E. Panov, Toricheskie deistviya v topologii i kombinatorike, MTsNMO, M., 2004, 272 pp. | MR | Zbl

[3] S. R. Gal, Discrete Comput. Geom., 34:2 (2005), 269–284 ; arXiv: math/0501046 | DOI | MR | Zbl

[4] V. D. Volodin, UMN, 65:1 (2010), 183–184 | MR | Zbl

[5] A. Postnikov, Int. Math. Res. Not. IMRN, 2009, no. 6, 1026–1106 ; arXiv: math.CO/0507163 | DOI | MR | Zbl

[6] V. M. Bukhshtaber, Tr. MIAN, 263, Nauka, M., 2008, 18–43 | MR | Zbl

[7] C. W. Lee, European J. Combin., 10:6 (1989), 551–560 | MR | Zbl

[8] V. M. Buchstaber, V. Volodin, Upper and lower bound theorems for graph-associahedra, arXiv: 1005.1631