Birationally rigid varieties. II. Fano fibre spaces
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 65 (2010) no. 6, pp. 1083-1171 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper gives a survey of the modern theory of birational rigidity for Fano fibre spaces over a base of positive dimension. It is a sequel to a previous survey on birational rigidity of Fano varieties. Here techniques of the method of maximal singularities are described for Fano fibre spaces. Bibliography: 53 titles.
Keywords: Fano variety, birational rigidity, maximal singularity.
Mots-clés : Fano fibre space, fibrewise modification
@article{RM_2010_65_6_a1,
     author = {A. V. Pukhlikov},
     title = {Birationally rigid varieties. {II.~Fano} fibre spaces},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {1083--1171},
     year = {2010},
     volume = {65},
     number = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2010_65_6_a1/}
}
TY  - JOUR
AU  - A. V. Pukhlikov
TI  - Birationally rigid varieties. II. Fano fibre spaces
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2010
SP  - 1083
EP  - 1171
VL  - 65
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/RM_2010_65_6_a1/
LA  - en
ID  - RM_2010_65_6_a1
ER  - 
%0 Journal Article
%A A. V. Pukhlikov
%T Birationally rigid varieties. II. Fano fibre spaces
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2010
%P 1083-1171
%V 65
%N 6
%U http://geodesic.mathdoc.fr/item/RM_2010_65_6_a1/
%G en
%F RM_2010_65_6_a1
A. V. Pukhlikov. Birationally rigid varieties. II. Fano fibre spaces. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 65 (2010) no. 6, pp. 1083-1171. http://geodesic.mathdoc.fr/item/RM_2010_65_6_a1/

[1] A. V. Pukhlikov, “Birationally rigid varieties. I. Fano varieties”, Russian Math. Surveys, 62:5 (2007), 857–942 | DOI | MR | Zbl

[2] V. G. Sarkisov, “On conic bundle structures”, Math. USSR-Izv., 20:2 (1983), 355–390 | DOI | MR | Zbl

[3] A. V. Pukhlikov, “Birational automorphisms of algebraic threefolds with a pencil of Del Pezzo surfaces”, Izv. Math., 62:1 (1998), 115–155 | DOI | MR | Zbl

[4] M. M. Grinenko, “Fibrations into del Pezzo surfaces”, Russian Math. Surveys, 61:2 (2006), 255–300 | DOI | MR | Zbl

[5] Yu. I. Manin, Cubic forms. Algebra, geometry, arithmetic, 2nd ed., North-Holland Math. Library, 4, North-Holland, Amsterdam–New York–Oxford, 1986 | MR | MR | Zbl | Zbl

[6] A. V. Pukhlikov, “Fiberwise birational correspondences”, Math. Notes, 68:1–2 (2000), 102–112 | MR | Zbl

[7] A. V. Pukhlikov, “Birationally rigid varieties with a pencil of Fano double covers. III”, Sb. Math., 197:3 (2006), 335–368 | DOI | MR | Zbl

[8] A. V. Pukhlikov, “Birational geometry of algebraic varieties with a pencil of Fano cyclic covers”, Pure Appl. Math. Q., 5:2 (2009), 641–700 | MR | Zbl

[9] I. R. Shafarevich, B. G. Averbukh, Yu. R. Vainberg, A. B. Zhizhchenko, Yu. I. Manin, B. G. Moishezon, G. N. Tyurina, A. N. Tyurin, “Algebraicheskie poverkhnosti”, Tr. MIAN, 75, Nauka, M., 1965, 3–215 | MR | Zbl

[10] C. Birkar, P. Cascini, C. D. Hacon, J. McKernan, “Existence of minimal models for varieties of log general type”, J. Amer. Math. Soc., 23:2 (2010), 405–468 | DOI | MR | Zbl

[11] C. D. Hacon, J. McKernan, The Sarkisov program, arXiv: 0905.0946

[12] A. Corti, “Factoring birational maps of threefolds after Sarkisov”, J. Algebraic Geom., 4:2 (1995), 223–254 | MR | Zbl

[13] V. G. Sarkisov, Birational maps of standard ${\mathbb Q}$-Fano fibrations, Preprint, Kurchatov Institute of Atomic Energy, Moscow, 1989

[14] M. Reid, Birational geometry of 3-folds according to Sarkisov, Preprint, Warwick Univ., 1991

[15] V. A. Iskovskikh, “Birational rigidity of Fano hypersurfaces in the framework of Mori theory”, Russian Math. Surveys, 56:2 (2001), 207–291 | DOI | MR | Zbl

[16] V. Alexeev, “Two two-dimensional terminations”, Duke Math. J., 69:3 (1993), 527–545 | DOI | MR | Zbl

[17] I. Cheltsov, J. Park, J. Won, Log canonical thresholds of certain Fano hypersurfaces, arXiv: 0706.0751

[18] C. Birkar, “Ascending chain condition for log canonical thresholds and termination of log flips”, Duke Math. J., 136:1 (2007), 173–180 | DOI | MR | Zbl

[19] V. A. Iskovskih, J. I. Manin, “Three-dimensional quartics and counterexamples to the Lüroth problem”, Math. USSR-Sb., 15:1 (1971), 141–166 | DOI | MR | Zbl | Zbl

[20] A. V. Pukhlikov, “Birational automorphisms of a three-dimensional quartic with a quadratic singularity”, Math. USSR-Sb., 63:2 (1989), 457–482 | DOI | MR | Zbl | Zbl

[21] A. Corti, “Singularities of linear systems and 3-fold birational geometry”, Explicit birational geometry of 3-folds, London Math. Soc. Lecture Note Ser., 281, Cambridge Univ. Press, Cambridge, 2000, 259–312 | MR | Zbl

[22] A. Corti, A. Pukhlikov, M. Reid, “Fano 3-fold hypersurfaces”, Explicit birational geometry of 3-folds, London Math. Soc. Lecture Note Ser., 281, Cambridge Univ. Press, Cambridge, 2000, 175–258 | DOI | MR | Zbl

[23] A. Corti, M. Mella, “Birational geometry of terminal quartic 3-folds. I”, Amer. J. Math., 126:4 (2004), 739–761 | DOI | MR | Zbl

[24] M. Mella, “Birational geometry of quartic 3-folds. II. The importance of being $\mathbb{Q}$-factorial”, Math. Ann., 330:1 (2004), 107–126 | DOI | MR | Zbl

[25] G. Brown, A. Corti, F. Zucconi, “Birational geometry of 3-fold Mori fiber spaces”, The Fano Conference, Univ. Torino, Turin, 2004, 235–275 | MR | Zbl

[26] M. M. Grinenko, “Birational properties of pencils of del Pezzo surfaces of degrees 1 and 2”, Sb. Math., 191:5 (2000), 633–653 | DOI | MR | Zbl

[27] M. M. Grinenko, “Birational properties of pencils of del Pezzo surfaces of degrees 1 and 2. II”, Sb. Math., 194:5 (2003), 669–695 | DOI | MR | Zbl

[28] I. V. Sobolev, “Birational automorphisms of a class of varieties fibred into cubic surfaces”, Izv. Math., 66:1 (2002), 201–222 | DOI | MR | Zbl

[29] M. M. Grinenko, “Mori structures on a Fano threefold of index 2 and degree 1”, Proc. Steklov Inst. Math., 246:3 (2004), 103–128 | MR | Zbl

[30] V. A. Iskovskikh, “On the rationality problem for three-dimensional algebraic varieties fibered over del Pezzo surfaces”, Proc. Steklov Inst. Math., 208 (1995), 115–123 | MR | Zbl

[31] A. V. Pukhlikov, “Birationally rigid varieties with a pencil of Fano double covers. II”, Sb. Math., 195:11 (2004), 1665–1702 | DOI | MR | Zbl

[32] A. V. Pukhlikov, “Birational geometry of algebraic varieties with a pencil of Fano complete intersections”, Manuscripta Math., 121:4 (2006), 491–526 | DOI | MR | Zbl

[33] A. V. Pukhlikov, “Birational geometry of Fano direct products”, Izv. Math., 69:6 (2005), 1225–1255 | DOI | MR | Zbl

[34] A. V. Pukhlikov, “Birational geometry of Fano double covers”, Sb. Math., 199:8 (2008), 1225–1250 | DOI | MR

[35] A. V. Pukhlikov, Birational geometry of Fano double spaces of index two, arXiv: 0812.3863

[36] A. V. Pukhlikov, “Birationally rigid Fano fibrations”, Izv. Math., 64:3 (2000), 563–581 | DOI | MR | Zbl

[37] I. V. Sobolev, “On a series of birationally rigid varieties with a pencil of Fano hypersurfaces”, Sb. Math., 192:9–10 (2001), 1543–1551 | DOI | MR | MR | Zbl | Zbl

[38] A. V. Pukhlikov, “Birational automorphisms of algebraic varieties with a pencil of double quadrics”, Math. Notes, 67:2 (2001), 192–199 | DOI | MR | Zbl

[39] Yu. I. Manin, “Rational surfaces over perfect fields”, Inst. Hautes Études Sci. Publ. Math., 30 (1966), 55–113 | DOI | MR | Zbl

[40] V. V. Shokurov, “3-fold log flips”, Russian Acad. Sci. Izv. Math., 40:1 (1993), 95–202 | DOI | MR | Zbl

[41] Flips and abundance for algebraic threefolds, Papers from the Second Summer Seminar on Algebraic Geometry (University of Utah, Salt Lake City, 1991), Astérisque, 211, Soc. Math. France, Paris, 1992 | MR | Zbl

[42] I. A. Cheltsov, “Fano varieties with many selfmaps”, Adv. Math., 217:1 (2008), 97–124 | DOI | MR | Zbl

[43] A. V. Pukhlikov, “Birational geometry of singular Fano varieties”, Proc. Steklov Inst. Math., 264 (2009), 159–177 | DOI | MR

[44] W. Fulton, Intersection Theory, Springer-Verlag, 1984 ; U. Fulton, Teoriya peresechenii, Mir, M., 1989 | MR | Zbl | MR

[45] A. V. Pukhlikov, “Birational automorphisms of Fano hypersurfaces”, Invent. Math., 134:2 (1998), 401–426 | DOI | MR | Zbl

[46] A. V. Pukhlikov, “Birationally rigid Fano hypersurfaces”, Izv. Math., 66:6 (2002), 1243–1269 | DOI | MR | Zbl

[47] I. A. Cheltsov, “Log canonical thresholds on hypersurfaces”, Sb. Math., 192:8 (2001), 1241–1257 | DOI | MR | Zbl

[48] A. V. Pukhlikov, “Birationally rigid Fano hypersurfaces with isolated singularities”, Sb. Math., 193:3 (2002), 445–471 | DOI | MR | Zbl

[49] F. Call, G. Lyubeznik, “A simple proof of Grothendieck's theorem on the parafactoriality of local rings”, Commutative algebra: syzygies, multiplicities, and birational algebra (South Hadley, MA, 1992), Contemp. Math., 159, Amer. Math. Soc., Providence, RI, 1994, 15–18 | MR | Zbl

[50] I. A. Cheltsov, “Local inequalities and birational superrigidity of Fano varieties”, Izv. Math., 70:3 (2006), 605–639 | DOI | MR | Zbl

[51] I. A. Cheltsov, “Non-rationality of the 4-dimensional smooth complete intersection of a quadric and a quartic not containing planes”, Sb. Math., 194:11 (2003), 1679–1699 | DOI | MR | Zbl

[52] I. Cheltsov, “Double cubics and double quartics”, Math. Z., 253:1 (2006), 75–86 | DOI | MR | Zbl

[53] A. V. Pukhlikov, On the $8n^2$-inequality, arXiv: 0811.0183

[54] A. V. Pukhlikov, “Birational automorphisms of a double space and double quadric”, Math. USSR-Izv., 32:1 (1989), 233–243 | DOI | MR | Zbl