Mots-clés : Marcinkiewicz space
@article{RM_2010_65_6_a0,
author = {S. V. Astashkin and F. A. Sukochev},
title = {Independent functions and the geometry of {Banach} spaces},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {1003--1081},
year = {2010},
volume = {65},
number = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2010_65_6_a0/}
}
TY - JOUR AU - S. V. Astashkin AU - F. A. Sukochev TI - Independent functions and the geometry of Banach spaces JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2010 SP - 1003 EP - 1081 VL - 65 IS - 6 UR - http://geodesic.mathdoc.fr/item/RM_2010_65_6_a0/ LA - en ID - RM_2010_65_6_a0 ER -
S. V. Astashkin; F. A. Sukochev. Independent functions and the geometry of Banach spaces. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 65 (2010) no. 6, pp. 1003-1081. http://geodesic.mathdoc.fr/item/RM_2010_65_6_a0/
[1] H. P. Rosenthal, “On the subspaces of $L_p$ ($p>2$) spanned by sequences of independent random variables”, Israel J. Math., 8:3 (1970), 273–303 | DOI | MR | Zbl
[2] V. F. Gaposhkin, “Lacunary series and independent functions”, Russian Math. Surveys, 21:6 (1966), 1–82 | DOI | MR | Zbl
[3] G. Peshkir, A. N. Shiryaev, “The Khintchine inequalities and martingale expanding of the sphere of their action”, Russian Math. Surveys, 50:5 (1995), 849–904 | DOI | MR | Zbl
[4] S. V. Astashkin, “Rademacher functions in symmetric spaces”, J. Math. Sci., 169:6 (2010), 725–886 | DOI | MR
[5] S. V. Astashkin, D. V. Zanin, E. M. Semenov, F. A. Sukochev, “Kruglov operator and operators defined by random permutations”, Funct. Anal. Appl., 43:2 (2009), 83–95 | DOI | MR
[6] S. Kwapień, C. Schütt, “Some combinatorial and probabilistic inequalities and their applications to Banach space theory”, Studia Math., 82:1 (1985), 91–106 | MR | Zbl
[7] C. Schütt, “Lorentz spaces that are isomorphic to subspaces of $L_1$”, Trans. Amer. Math. Soc., 314:2 (1989), 583–595 http://www.jstor.org/stable/2001398 | MR | Zbl
[8] M. Junge, Q. Xu, “Noncommutative Burkholder/Rosenthal inequalities. II: Applications”, Israel J. Math., 167:1 (2008), 227–282 | DOI | MR | Zbl
[9] A. Khintchine, “Über dyadische Brüche”, Math. Z., 18:1 (1923), 109–116 | DOI | MR | Zbl
[10] S. Kaczmarz, H. Steinhaus, Theorie der Orthogonalreihen, Subwencji Funduszu Kultury Narodowej, Warszawa, 1935, 298 pp. | MR | Zbl
[11] J. Marcinkiewicz, A. Zygmund, “Remarque sur la loi du logarithme itéré”, Fund. Math., 29 (1937), 215–222 | Zbl
[12] B. S. Kashin, A. A. Saakyan, Orthogonal series, Transl. Math. Monogr., 75, Amer. Math. Soc., Providence, RI, 1989, 451 pp. | MR | MR | Zbl | Zbl
[13] A. N. Kolmogoroff, “Über das Gesetz des iterierten Logarithmus”, Math. Ann., 101:1 (1929), 126–135 ; “O zakone povtornogo logarifma”: A. N. Kolmogorov, Teoriya veroyatnostei i matematicheskaya statistika, Nauka, M., 1986, 34–44 ; Рђ. Рќ. Колмогоров, Рђ. Рќ. Колмогоров, Р�збранныРμ труды, 2, Наука, Рњ., 2005, 37–46 | DOI | MR | Zbl | MR | Zbl | MR | Zbl
[14] Yu. V. Prokhorov, “An extremal problem in probability theory”, Theory Probab. Appl., 4 (1959), 201–203 | DOI | MR | MR | Zbl
[15] R. J. Elliott, Stochastic calculus and applications, Appl. Math. (N. Y.), 18, Springer-Verlag, New York, 1982, 302 pp. | MR | MR | Zbl | Zbl
[16] S. G. Krein, Yu. I. Petunin, E. M. Semenov, Interpolation of linear operators, Transl. Math. Monogr., 54, Amer. Math. Soc., Providence, RI, 1982, 375 pp. | MR | Zbl | Zbl
[17] J. Lindenstrauss, L. Tzafriri, Classical Banach spaces. II. Function Spaces, Ergeb. Math. Grenzgeb., 97, Springer-Verlag, Berlin–New York, 1979, 243 pp. | MR | Zbl
[18] C. Bennett, R. Sharpley, Interpolation of operators, Pure Appl. Math., 129, Academic Press, Boston, MA, 1988, 469 pp. | MR | Zbl
[19] L. V. Kantorovich, G. P. Akilov, Functional analysis in normed spaces, International Series of Monographs in Pure and Applied Mathematics, 46, Macmillan, New York, 1964, 771 pp. | MR | MR | Zbl
[20] M. A. Krasnosel'skii, Ja. B. Rutickii, Convex functions and Orlicz spaces, Noordhoff, Groningen, 1961, 249 pp. | MR | MR | Zbl
[21] J. Bergh, J. Löfstróm, Interpolation spaces. An introduction, Grundlehren Math. Wiss., 223, Springer-Verlag, Berlin–New York, 1976, 207 pp. | MR | MR | Zbl
[22] Ju. A. Brudnyi, N. Ya. Krugljak, Interpolation functors and interpolation spaces, v. I, North-Holland Math. Library, 47, North-Holland, Amsterdam, 1991, 718 pp. | MR | Zbl
[23] A. P. Calderón, “Spaces between $L^1$ and $L^\infty$ and the theorem of Marcinkiewicz”, Studia Math., 26 (1966), 273–299 | MR | Zbl
[24] B. S. Mityagin, “Interpolyatsionnaya teorema dlya modulyarnykh prostranstv”, Matem. sb., 66:4 (1965), 473–482 | MR | Zbl
[25] A. P. Calderon, “Intermediate spaces and interpolation, the complex method”, Studia Math., 24:2 (1964), 113–190 | MR | Zbl
[26] G. Ya. Lozanovskii, “A remark on an interpolational theorem of Calderon”, Funct. Anal. Appl., 6:4 (1972), 333–334 | DOI | MR | Zbl
[27] P. Hitczenko, “Domination inequality for martingale transforms of a Rademacher sequence”, Israel J. Math., 84:1–2 (1993), 161–178 | DOI | MR | Zbl
[28] T. Holmstedt, “Interpolation of quasi-normed spaces”, Math. Scand., 26:1 (1970), 177–199 | MR | Zbl
[29] S. J. Montgomery-Smith, “The distribution of Rademacher sums”, Proc. Amer. Math. Soc., 109:2 (1990), 517–522 | DOI | MR | Zbl
[30] J.-P. Kahane, Some random series of functions, D. C. Heath and Co., Raytheon Education Co., Lexington, MA, 1968, 184 pp. | MR | MR | Zbl | Zbl
[31] R. Latala, “Estimation of moments of sums of independent real random variables”, Ann. Probab., 25:3 (1997), 1502–1513 | DOI | MR | Zbl
[32] E. D. Gluskin, S. Kwapien, “Tail and moment estimates for sums of independent random variables with logarithmically concave tails”, Studia Math., 114:3 (1995), 303–309 | MR | Zbl
[33] P. Hitczenko, S. J. Montgomery-Smith, K. Oleszkiewicz, “Moment inequalities for sums of certain independent symmetric random variables”, Studia Math., 123:1 (1997), 15–42 | MR | Zbl
[34] N. L. Carothers, S. J. Dilworth, “Inequalities for sums of independent random variables”, Proc. Amer. Math. Soc., 104:1 (1988), 221–226 | DOI | MR | Zbl
[35] W. B. Johnson, G. Schechtman, “Sums of independent random variables in rearrangement invariant function spaces”, Ann. Probab., 17:2 (1989), 789–808 | DOI | MR | Zbl
[36] J. Hoffman-Jørgensen, “Sums of independent Banach space valued random variables”, Studia Math., 52 (1974), 159–186 | MR | Zbl
[37] M. B. Marcus, G. Pisier, “Characterization of almost surely continuous $p$-stable random Fourier series and strongly stationary processes”, Acta Math., 152:1 (1984), 245–301 | DOI | MR | Zbl
[38] W. B. Johnson, B. Maurey, G. Schechtman, L. Tzafriri, Symmetric structures in Banach spaces, Mem. Amer. Math. Soc., 19, No 217, 1979, 298 pp. | MR | Zbl
[39] M. Sh. Braverman, Independent random variables and rearrangement invariant spaces, London Math. Soc. Lecture Note Ser., 194, Cambridge Univ. Press, Cambridge, 1994, 116 pp. | MR | Zbl
[40] V. M. Kruglov, “A note on infinitely divisible distributions”, Theory Probab. Appl., 15:2 (1970), 319–324 | DOI | MR | Zbl | Zbl
[41] E. Lukacs, Characteristic functions, 2nd ed., Hafner, New York, 1970, 350 pp. | MR | MR | Zbl | Zbl
[42] S. V. Astashkin, F. A. Sukochev, “Series of independent random variables in rearrangement invariant spaces: An operator approach”, Israel J. Math., 145:1 (2005), 125–156 | DOI | MR | Zbl
[43] S. V. Astashkin, F. A. Sukochev, “Comparison of sums of independent and disjoint functions in symmetric spaces”, Math. Notes, 76:3–4 (1970), 449–454 | DOI | MR | Zbl
[44] S. V. Astashkin, F. A. Sukochev, “Best constants in Rosenthal-type inequalities and the Kruglov operator”, Ann. Probab., 38:5 (2010), 1986–2008 ; arXiv: 1011.1381 | DOI | MR | Zbl
[45] S. Kwapień, W. A. Woyczyński, Random series and stochastic integrals: single and multiple, Probab. Appl., Birkhäuser, Boston, MA, 1992, 360 pp. | MR | Zbl
[46] V. I. Ovchinnikov, “The method of orbits in interpolation theory”, Math. Rep., 1:2 (1984), 349–515 | MR | Zbl
[47] S. Montgomery-Smith, E. M. Semenov, “Random rearrangements and operators”, Amer. Math. Soc. Transl. Ser. 2, 184, Amer. Math. Soc., Providence, RI, 1998, 157–183 | MR | Zbl
[48] J. V. Ryff, “Orbits of $L_1$ functions under doubly stochastic transformations”, Trans. Amer. Math. Soc., 117 (1965), 92–100 http://www.jstor.org/stable/1994198 | MR | Zbl
[49] V. I. Chilin, A. V. Krygin, F. A. Sukochev, “Extreme points of convex fully symmetric sets of measurable operators”, Integral Equations Operator Theory, 15:2 (1992), 186–226 | DOI | MR | Zbl
[50] A. A. Borovkov, Probability theory, Gordon and Breach, Abingdon, Oxon, 1998, 474 pp. | MR | MR | Zbl | Zbl
[51] Yu. V. Prokhorov, “Strong stability of sums and infinitely divisible distributions”, Theory Probab. Appl., 3:2 (1958), 141–153 | DOI | Zbl
[52] S. V. Astashkin, F. A. Sukochev, “Series of independent, mean zero random variables in rearrangement-invariant spaces having the Kruglov property”, J. Math. Sci. (N. Y.), 148:6 (2008), 795–809 | DOI | MR
[53] F. A. Sukochev, D. V. Zanin, Khintchine inequalities in quasi-normed spaces, manuscript
[54] Y. Gordon, A. Litvak, C. Schütt, E. Werner, “Orlicz norms of sequences of random variables”, Ann. Probab., 30:4 (2002), 1833–1853 | DOI | MR | Zbl
[55] Y. Gordon, A. Litvak, C. Schütt, E. Werner, “Geometry of spaces between polytopes and related zonotopes”, Bull. Sci. Math., 126:9 (2002), 733–762 | DOI | MR | Zbl
[56] P. Hitczenko, S. Montgomery-Smith, “Measuring the magnitude of sums of independent random variables”, Ann. Probab., 29:1 (2001), 447–466 | DOI | MR | Zbl
[57] S. Montgomery-Smith, “Rearrangement invariant norms of symmetric sequence norms of independent sequences of random variables”, Israel J. Math., 131:1 (2002), 51–60 | DOI | MR | Zbl
[58] M. Junge, “The optimal order for the $p$-th moment of sums of independent random variables with respect to symmetric norms and related combinatorial estimates”, Positivity, 10:2 (2006), 201–230 | DOI | MR | Zbl
[59] S. V. Astashkin, E. M. Semenov, F. A. Sukochev, “Banach–Saks type properties in rearrangement-invariant spaces with Kruglov property”, Houston J. Math., 35:3 (2009), 959–973 | MR | Zbl
[60] S. V. Astashkin, K. E. Tikhomirov, “O nekotorykh veroyatnostnykh analogakh neravenstva Rozentalya”, Matem. zametki (to appear)
[61] S. V. Astashkin, F. A. Sukochev, “Symmetric quasi-norms of sums of independent random variables in symmetric function spaces with the Kruglov property”, Israel J. Math. (to appear)
[62] A. V. Bukhvalov, “Interpolation of linear operators in spaces of vector-valued functions and with mixed norm”, Siberian Math. J., 28:1 (1987), 24–36 | MR | Zbl
[63] D. L. Burkholder, “A sharp inequality for martingale transforms”, Ann. Probab., 7:5 (1979), 858–863 | DOI | MR | Zbl
[64] W. Johnson, G. Schechtman, J. Zinn, “Best constants in moment inequalities for linear combinations of independent and exchangeable random variables”, Ann. Probab., 13:1 (1985), 234–253 | DOI | MR | Zbl
[65] S. V. Astashkin, “Extrapolation functors on a family of scales generated by the real interpolation method”, Siberian Math. J., 46:2 (2005), 205–225 | DOI | MR | Zbl
[66] V. A. Rodin, E. M. Semyonov, “Rademacher series in symmetric spaces”, Anal. Math., 1:3 (1975), 207–222 | DOI | MR | Zbl
[67] S. V. Astashkin, “Independent functions in rearrangement invariant spaces and the Kruglov property”, Sb. Math., 199:7 (2008), 945–963 | DOI | MR
[68] S. V. Astashkin, “A generalized Khintchine inequality in rearrangement invariant spaces”, Funct. Anal. Appl., 42:2 (2008), 144–147 | DOI | MR | Zbl
[69] V. I. Dmitriev, S. G. Krein, V. I. Ovchinnikov, “Osnovy teorii interpolyatsii lineinykh operatorov”, Geometriya lineinykh prostranstv i teoriya operatorov, Yaroslavl, 1977, 31–74 | MR | Zbl
[70] S. V. Astashkin, “About interpolation of subspaces of rearrangement invariant spaces generated by Rademacher system”, Int. J. Math. Math. Sci., 25:7 (2001), 451–465 | DOI | MR | Zbl
[71] S. J. Szarek, “On the best constant in the Khintchine inequality”, Studia Math., 58:2 (1976), 197–208 | MR | Zbl
[72] S. V. Astashkin, M. Sh. Braverman, “Podprostranstvo simmetrichnogo prostranstva, porozhdennoe sistemoi Rademakhera s vektornymi koeffitsientami”, Operatornye uravneniya v funktsionalnykh prostranstvakh, Izd-vo VGU, Voronezh, 1986, 3–10 | MR | Zbl
[73] R. Salem, A. Zygmund, “Some properties of trigonometric series whose terms have random signs”, Acta Math., 91:1 (1954), 245–301 | DOI | MR | Zbl
[74] M. B. Marcus, G. Pisier, Random Fourier series with applications to harmonic analysis, Ann. of Math. Stud., 101, Princeton Univ. Press, Princeton, NJ; Univ. Tokyo Press, Tokyo, 1981, 151 pp. | MR | Zbl
[75] M. Ledoux, M. Talagrand, Probability in Banach spaces, Ergeb. Math. Grenzgeb. (3), 23, Springer-Verlag, Berlin, 1991, 480 pp. | MR | Zbl
[76] B. Kashin, L. Tzafriri, “Lower estimates for the supremum of some random processes”, East J. Approx., 1:1 (1995), 125–139 | MR | Zbl
[77] B. Kashin, L. Tzafriri, “Lower estimates for the supremum of some random processes. II”, East J. Approx., 1:3 (1995), 373–377 | MR | Zbl
[78] S. V. Astashkin, “Extraction of subsystems ‘majorized’ by the Rademacher system”, Math. Notes, 65:4 (1999), 407–417 | DOI | MR | Zbl
[79] P. G. Grigor'ev, “Random linear combinations of functions from $L_1$”, Math. Notes, 74:1–2 (2003), 185–211 | DOI | MR | Zbl
[80] P. G. Grigoriev, “Estimates for norms of random polynomials”, East J. Approx., 7:4 (2001), 445–469 | MR | Zbl
[81] P. G. Grigor'ev, “Estimates for norms of random polynomials and their application”, Math. Notes, 69:5-6 (2003), 868–872 | DOI | MR | Zbl
[82] B. S. Mityagin, “The homotopy structure of the linear group of a Banach space”, Russian Math. Surveys, 25:5 (1970), 59–103 | DOI | MR | Zbl
[83] S. V. Astashkin, “Rademacher series and isomorphisms of rearrangement invariant spaces on the finite interval and on the semi-axis”, J. Funct. Anal., 260:1 (2010), 195–207 | DOI
[84] L. E. Dor, J. T. Starbird, “Projections of $L_p$ onto subspaces spanned by independent random variables”, Compositio Math., 39:2 (1979), 141–175 | MR | Zbl
[85] S. V. Astashkin, F. A. Sukochev, “Sequences of independent identically distributed functions in rearrangement invariant spaces”, Function spaces VIII, Banach Center Publ., 79, Polish Acad. Sci. Inst. Math., Warsaw, 2008, 27–37 | MR | Zbl
[86] S. V. Astashkin, “Interpolation of intersections by the real method”, St. Petersburg Math. J., 17:2 (2006), 239–265 | DOI | MR | Zbl
[87] G. G. Lorentz, T. Shimogaki, “Interpolation theorems for the pairs of spaces $(L^p,L^\infty)$ and $(L^1,L^q)$”, Trans. Amer. Math. Soc., 159 (1971), 207–221 | MR | Zbl