New properties of arithmetic groups
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 65 (2010) no. 5, pp. 951-975 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

New substantial results including the solutions of a number of fundamental problems have been obtained in the last decade or so: the first and rather unexpected examples of arithmetic groups with finite extensions that are not arithmetic were constructed; a criterion for arithmeticity of such extensions was found; deep rigidity theorems were proved for arithmetic subgroups of algebraic groups with radical; a theorem on the finiteness of the number of conjugacy classes of finite subgroups in finite extensions of arithmetic groups was proved, leading to numerous applications, in particular, this theorem made it possible to solve the Borel–Serre problem (1964) on the finiteness of the first cohomology of finite groups with coefficients in an arithmetic group; the problem posed more than 30 years ago on the existence of finitely generated integral linear groups that have infinitely many conjugacy classes of finite subgroups was solved; the arithmeticity question for solvable groups was settled. Similar problems were also solved for lattices in Lie groups with finitely many connected components. This paper is a survey of these results. Bibliography: 27 titles.
Keywords: arithmetic group, rigidity theorems, arithmeticity criterion, problem of conjugacy of finite subgroups, lattices in Lie groups.
@article{RM_2010_65_5_a5,
     author = {V. P. Platonov},
     title = {New properties of arithmetic groups},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {951--975},
     year = {2010},
     volume = {65},
     number = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2010_65_5_a5/}
}
TY  - JOUR
AU  - V. P. Platonov
TI  - New properties of arithmetic groups
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2010
SP  - 951
EP  - 975
VL  - 65
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/RM_2010_65_5_a5/
LA  - en
ID  - RM_2010_65_5_a5
ER  - 
%0 Journal Article
%A V. P. Platonov
%T New properties of arithmetic groups
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2010
%P 951-975
%V 65
%N 5
%U http://geodesic.mathdoc.fr/item/RM_2010_65_5_a5/
%G en
%F RM_2010_65_5_a5
V. P. Platonov. New properties of arithmetic groups. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 65 (2010) no. 5, pp. 951-975. http://geodesic.mathdoc.fr/item/RM_2010_65_5_a5/

[1] V. Platonov, A. Rapinchuk, Algebraic groups and number theory, Pure Appl. Math., Academic Press, Boston, MA, 1994, 614 pp. | MR | MR | Zbl | Zbl

[2] V. P. Platonov, “The arithmetic theory of algebraic groups”, Russian Math. Surveys, 37:3 (1982), 1–62 | DOI | MR | Zbl | Zbl

[3] F. Grunewald, V. Platonov, “New properties of lattices in Lie groups”, C. R. Math. Acad. Sci. Paris, 338:4 (2004), 271–276 | DOI | MR | Zbl

[4] F. Grunewald, V. Platonov, “On finite extensions of arithmetic groups”, C. R. Acad. Sci. Paris Sér. I Math., 325:11 (1997), 1153–1158 | DOI | MR | Zbl

[5] F. Grunewald, V. Platonov, “Non-arithmetic polycyclic groups”, C. R. Acad. Sci. Paris Sér. I Math., 326:12 (1998), 1359–1364 | DOI | MR | Zbl

[6] F. Grunewald, V. Platonov, “Rigidity and automorphism groups of solvable arithmetic groups”, C. R. Acad. Sci. Paris Sér. I Math., 327:5 (1998), 427–432 | DOI | MR | Zbl

[7] F. Grunewald, V. Platonov, “Rigidity results for groups with radical cohomology of finite groups and arithmeticity problems”, Duke Math. J., 100:2 (1999), 321–358 | DOI | MR | Zbl

[8] F. Grunewald, V. Platonov, “Solvable arithmetic groups and arithmeticity problems”, Internat. J. Math., 10:3 (1999), 327–366 | DOI | MR | Zbl

[9] G. Prasad, “Discrete subgroups isomorphic to lattices in Lie groups”, Amer. J. Math., 98:4 (1976), 853–863 | DOI | MR | Zbl

[10] M. R. Bridson, “Geodesics and curvature in metric simplicial complexes”, Group theory from a geometrical viewpoint (Trieste, 1990), World Sci. Publ., River Edge, NJ, 1991, 373–463 | MR | Zbl

[11] J.-P. Serre, Trees, Springer-Verlag, Berlin–New York, 1980, 142 pp. | MR | Zbl

[12] W. Dicks, M. J. Dunwoody, Groups acting on graphs, Cambridge Stud. Adv. Math., 17, Cambridge Univ. Press, Cambridge, 1989, 283 pp. | MR | Zbl

[13] M. Bridson, A. Haefliger, Metric spaces of non-positive curvature, Grundlehren Math. Wiss., 319, Springer-Verlag, Berlin, 1999, 643 pp. | MR | Zbl

[14] V. P. Platonov, “Theory of algebraic linear groups and periodic groups”, Amer. Math. Soc. Transl. Ser. 2, 69 (1968), 61–110 | MR | Zbl | Zbl

[15] S. P. Kerckhoff, “The Nielsen realization problem”, Ann. of Math. (2), 117:2 (1983), 235–265 | DOI | MR | Zbl

[16] A. I. Maltsev, “O nekotorykh klassakh beskonechnykh razreshimykh grupp”, Matem. sb., 28:3 (1951), 567–588 | MR | Zbl

[17] A. Borel, J.-P. Serre, “Théorèmes de finitude en cohomologie galoisienne”, Comment. Math. Helv., 39 (1964), 111–164 | DOI | MR | Zbl

[18] H. Rademacher, “Über die Erzeugenden von Kongruenzuntergruppen der Modulgruppe”, Abh. Math. Sem. Univ. Hamburg, 7:1 (1929), 134–148 | DOI | Zbl

[19] M. R. Bridson, “Finiteness properties for subgroups of $GL(n,\mathbb{Z})$”, Math. Ann., 317:4 (2000), 629–633 | DOI | MR | Zbl

[20] A. I. Mal'tsev, “On a class of homogeneous spaces”, Amer. Math. Soc. Transl., 39 (1951), 33 pp. | MR | Zbl

[21] L. Auslander, “On a problem of Philip Hall”, Ann. of Math. (2), 86:1 (1967), 112–116 | DOI | MR | Zbl

[22] V. P. Platonov, “O kongruents-probleme dlya razreshimykh tselochislennykh grupp”, Dokl. AN BSSR, 15:2 (1971), 869–872 | MR | Zbl

[23] D. Segal, Polycyclic groups, Cambridge Tracts in Math., 82, Cambridge Univ. Press, Cambridge, 1983, xiv+289 pp. | MR | Zbl

[24] V. P. Platonov, “Solvable algebraic groups”, Soviet Math. Dokl., 4 (1963), 924–927 | MR | Zbl

[25] O. Baues, F. Grunewald, “Automorphism groups of polycyclic-by-finite groups and arithmetic groups”, Publ. Math. Inst. Hautes Études Sci., 104:1 (2006), 213–268 | DOI | MR | Zbl

[26] L. Greenberg, “Finiteness theorems for Fuchsian and Kleinian groups”, Discrete groups and automorphic functions (Cambridge, 1975), Academic Press, London, 1977, 199–257 | MR

[27] G. A. Margulis, Discrete subgroups of semisimple Lie groups, Ergeb. Math. Grenzgeb. (3), 17, Springer-Verlag, Berlin, 1991, x+388 pp. | MR | Zbl