@article{RM_2010_65_5_a5,
author = {V. P. Platonov},
title = {New properties of arithmetic groups},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {951--975},
year = {2010},
volume = {65},
number = {5},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2010_65_5_a5/}
}
V. P. Platonov. New properties of arithmetic groups. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 65 (2010) no. 5, pp. 951-975. http://geodesic.mathdoc.fr/item/RM_2010_65_5_a5/
[1] V. Platonov, A. Rapinchuk, Algebraic groups and number theory, Pure Appl. Math., Academic Press, Boston, MA, 1994, 614 pp. | MR | MR | Zbl | Zbl
[2] V. P. Platonov, “The arithmetic theory of algebraic groups”, Russian Math. Surveys, 37:3 (1982), 1–62 | DOI | MR | Zbl | Zbl
[3] F. Grunewald, V. Platonov, “New properties of lattices in Lie groups”, C. R. Math. Acad. Sci. Paris, 338:4 (2004), 271–276 | DOI | MR | Zbl
[4] F. Grunewald, V. Platonov, “On finite extensions of arithmetic groups”, C. R. Acad. Sci. Paris Sér. I Math., 325:11 (1997), 1153–1158 | DOI | MR | Zbl
[5] F. Grunewald, V. Platonov, “Non-arithmetic polycyclic groups”, C. R. Acad. Sci. Paris Sér. I Math., 326:12 (1998), 1359–1364 | DOI | MR | Zbl
[6] F. Grunewald, V. Platonov, “Rigidity and automorphism groups of solvable arithmetic groups”, C. R. Acad. Sci. Paris Sér. I Math., 327:5 (1998), 427–432 | DOI | MR | Zbl
[7] F. Grunewald, V. Platonov, “Rigidity results for groups with radical cohomology of finite groups and arithmeticity problems”, Duke Math. J., 100:2 (1999), 321–358 | DOI | MR | Zbl
[8] F. Grunewald, V. Platonov, “Solvable arithmetic groups and arithmeticity problems”, Internat. J. Math., 10:3 (1999), 327–366 | DOI | MR | Zbl
[9] G. Prasad, “Discrete subgroups isomorphic to lattices in Lie groups”, Amer. J. Math., 98:4 (1976), 853–863 | DOI | MR | Zbl
[10] M. R. Bridson, “Geodesics and curvature in metric simplicial complexes”, Group theory from a geometrical viewpoint (Trieste, 1990), World Sci. Publ., River Edge, NJ, 1991, 373–463 | MR | Zbl
[11] J.-P. Serre, Trees, Springer-Verlag, Berlin–New York, 1980, 142 pp. | MR | Zbl
[12] W. Dicks, M. J. Dunwoody, Groups acting on graphs, Cambridge Stud. Adv. Math., 17, Cambridge Univ. Press, Cambridge, 1989, 283 pp. | MR | Zbl
[13] M. Bridson, A. Haefliger, Metric spaces of non-positive curvature, Grundlehren Math. Wiss., 319, Springer-Verlag, Berlin, 1999, 643 pp. | MR | Zbl
[14] V. P. Platonov, “Theory of algebraic linear groups and periodic groups”, Amer. Math. Soc. Transl. Ser. 2, 69 (1968), 61–110 | MR | Zbl | Zbl
[15] S. P. Kerckhoff, “The Nielsen realization problem”, Ann. of Math. (2), 117:2 (1983), 235–265 | DOI | MR | Zbl
[16] A. I. Maltsev, “O nekotorykh klassakh beskonechnykh razreshimykh grupp”, Matem. sb., 28:3 (1951), 567–588 | MR | Zbl
[17] A. Borel, J.-P. Serre, “Théorèmes de finitude en cohomologie galoisienne”, Comment. Math. Helv., 39 (1964), 111–164 | DOI | MR | Zbl
[18] H. Rademacher, “Über die Erzeugenden von Kongruenzuntergruppen der Modulgruppe”, Abh. Math. Sem. Univ. Hamburg, 7:1 (1929), 134–148 | DOI | Zbl
[19] M. R. Bridson, “Finiteness properties for subgroups of $GL(n,\mathbb{Z})$”, Math. Ann., 317:4 (2000), 629–633 | DOI | MR | Zbl
[20] A. I. Mal'tsev, “On a class of homogeneous spaces”, Amer. Math. Soc. Transl., 39 (1951), 33 pp. | MR | Zbl
[21] L. Auslander, “On a problem of Philip Hall”, Ann. of Math. (2), 86:1 (1967), 112–116 | DOI | MR | Zbl
[22] V. P. Platonov, “O kongruents-probleme dlya razreshimykh tselochislennykh grupp”, Dokl. AN BSSR, 15:2 (1971), 869–872 | MR | Zbl
[23] D. Segal, Polycyclic groups, Cambridge Tracts in Math., 82, Cambridge Univ. Press, Cambridge, 1983, xiv+289 pp. | MR | Zbl
[24] V. P. Platonov, “Solvable algebraic groups”, Soviet Math. Dokl., 4 (1963), 924–927 | MR | Zbl
[25] O. Baues, F. Grunewald, “Automorphism groups of polycyclic-by-finite groups and arithmetic groups”, Publ. Math. Inst. Hautes Études Sci., 104:1 (2006), 213–268 | DOI | MR | Zbl
[26] L. Greenberg, “Finiteness theorems for Fuchsian and Kleinian groups”, Discrete groups and automorphic functions (Cambridge, 1975), Academic Press, London, 1977, 199–257 | MR
[27] G. A. Margulis, Discrete subgroups of semisimple Lie groups, Ergeb. Math. Grenzgeb. (3), 17, Springer-Verlag, Berlin, 1991, x+388 pp. | MR | Zbl