On the way from logic to algebra
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 65 (2010) no. 5, pp. 937-949 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, which is from a shorthand report of the author's plenary lecture at the international conference “Malcev Meeting 2009” (Novosibirsk, 24–28 August 2009), the influence of three papers by Anatolii Ivanovich Malcev [1]–[3] on the development of algebra and mathematical logic is discussed. Bibliography: 75 titles.
Keywords: local theorems, elementary theories of fields.
@article{RM_2010_65_5_a4,
     author = {Yu. L. Ershov},
     title = {On the way from logic to algebra},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {937--949},
     year = {2010},
     volume = {65},
     number = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2010_65_5_a4/}
}
TY  - JOUR
AU  - Yu. L. Ershov
TI  - On the way from logic to algebra
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2010
SP  - 937
EP  - 949
VL  - 65
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/RM_2010_65_5_a4/
LA  - en
ID  - RM_2010_65_5_a4
ER  - 
%0 Journal Article
%A Yu. L. Ershov
%T On the way from logic to algebra
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2010
%P 937-949
%V 65
%N 5
%U http://geodesic.mathdoc.fr/item/RM_2010_65_5_a4/
%G en
%F RM_2010_65_5_a4
Yu. L. Ershov. On the way from logic to algebra. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 65 (2010) no. 5, pp. 937-949. http://geodesic.mathdoc.fr/item/RM_2010_65_5_a4/

[1] A. Malcev, “Untersuchungen aus dem Gebiete der mathematischen Logik”, Matem. sb., 1:3 (1936), 323–335 | Zbl

[2] A. I. Maltsev, “Ob odnom obschem metode polucheniya lokalnykh teorem teorii grupp”, Uchenye zapiski Ivanovskogo ped. in-ta, 1:1 (1941), 3–9 | MR

[3] A. I. Maltsev, “O nerazreshimosti elementarnykh teorii nekotorykh polei”, Sib. matem. zhurn., 1:1 (1960), 71–77 | MR

[4] L. Henkin, J. D. Monk, A. Tarski, Cylindric algebras. Part I. With an introductory chapter: General theory of algebras, Stud. Logic Found. Math., 64, North-Holland, Amsterdam–London, 1971, 508 pp. | MR | Zbl

[5] A. I. Mal'tsev, “On the history of algebra in the USSR during the first 25 years”, Algebra Logic, 10 (1971), 68–75 | DOI | MR

[6] A. Robinson, Introduction to model theory and the metamathematics of algebra, North Holland, Amsterdam, 1963, 284 pp. | MR | Zbl

[7] C. C. Chang, J. Keisler, Model theory, Stud. Logic Found. Math., 73, North-Holland, Amsterdam–London; American Elsevier, New York, 1973, 550 pp. | MR | Zbl

[8] W. Hodges, Model theory, Encyclopedia Math. Appl., 42, Cambridge Univ. Press, Cambridge, 1993, 772 pp. | MR | Zbl

[9] S. Shelah, Classification theory and the number of nonisomorphic models, Stud. Logic Found. Math., 92, North-Holland, Amsterdam, 1990, 705 pp. | MR | Zbl

[10] B. Poizat, A course in model theory. An introduction to contemporary mathematical logic, Universitext, Springer-Verlag, New York, 2000, 443 pp. | MR | Zbl

[11] G. E. Sacks, Saturated model theory, Mathematics Lecture Note Series, W. A. Benjamin, Reading, MA, 1972, 335 pp. | MR | Zbl

[12] E. Hrushovski, B. Zilber, “Zariski geometries”, J. Amer. Math. Soc., 9:1 (1996), 1–56 | DOI | MR | Zbl

[13] L. van den Dries, Tame topology and $o$-minimal structures, London Math. Soc. Lecture Note Ser., 248, Cambridge Univ. Press, Cambridge, 1998, 180 pp. | MR | Zbl

[14] A. Robinson, “Recent developments in model theory”, Logic, Methodology and Philosophy of Science (Proc. 1960 Internat. Congr.), Stanford Univ. Press, Stanford, CA, 1962, 60–79 | MR | Zbl

[15] A. I. Maltsev, “O predstavlenii modelei”, Dokl. AN SSSR, 108:1 (1956), 27–29 | MR | Zbl

[16] A. I. Maltsev, “Modelnye sootvetstviya”, Izv. AN SSSR. Ser. matem., 23:3 (1959), 313–336 | MR | Zbl

[17] M. I. Kargapolov, Yu. I. Merzlyakov, Osnovy teorii grupp, Nauka, M., 1972, 240 pp. | MR | Zbl

[18] A. J. Wilkie, “Model completeness results for expansions of the ordered field of real numbers by restricted Pfaffian functions and the exponential function”, J. Amer. Math. Soc., 9:4 (1996), 1051–1094 | DOI | MR | Zbl

[19] A. J. Wilkie, “A theorem on the complement and some new $o$-minimal structures”, Selecta Math. (N. S.), 5:4 (1999), 397–421 | DOI | MR | Zbl

[20] A. G. Khovanskii, Malochleny, Biblioteka matematika, 2, FAZIS, M., 1997, 217 pp. | MR

[21] J. P. Cleave, “Local properties of systems”, J. London Math. Soc., 44:1 (1969), 121–130 | DOI | MR | Zbl

[22] A. I. Maltsev, “Nekotorye voprosy teorii modelei”, Trudy IV Vsesoyuznogo matematicheskogo s'ezda (Leningrad, 1961), v. 1, Izd-vo AN SSSR, L., 1963, 169–198 | MR | Zbl

[23] A. I. Maltsev, “O nekotorykh pogranichnykh voprosakh algebry i matematicheskoi logiki”, Trudy Mezhdunarodnogo kongressa matematikov (Moskva, 1966), Mir, M., 1968, 217–231 | MR | Zbl

[24] A. I. Mal'tsev, “On the faithful representation of infinite groups by matrices”, Amer. Math. Soc. Transl. Ser. 2, 45 (1965), 1–18 | MR | Zbl

[25] A. I. Maltsev, “O predstavlenii beskonechnykh algebr”, Matem. sb., 13:2–3 (1943), 263–285 | MR | Zbl

[26] A. I. Mal'tsev, “On a class of homogeneous spaces”, Amer. Math. Soc. Transl., 39 (1951), 33 pp. | MR | Zbl

[27] A. Tarski, “The elementary undecidability of pure transcendental extensions of real closed fields”, Notices Amer. Math. Soc., 10 (1963), 355

[28] J. Robinson, “The decision problem for fields”, Theory of Models (Proc. 1963 Internat. Sympos. Berkeley), North-Holland, Amsterdam, 1965, 299–311 | MR | Zbl

[29] R. M. Robinson, “The undecidability of pure transcendental extensions of real fields”, Z. Math. Logik Grundlagen Math., 10:18 (1964), 275–282 | DOI | MR | Zbl

[30] Yu. L. Ershov, “The undecidability of certain fields”, Soviet Math. Dokl., 6 (1965), 349–352 | MR | Zbl

[31] J. Ax, “The undecidability of power series”, Proc. Amer. Math. Soc., 16:4 (1965), 846 | MR | Zbl

[32] J. Ax, S. Kochen, “Diophantine problems over local fields. I”, Amer. J. Math., 87:3 (1965), 605–630 | DOI | MR | Zbl

[33] J. Ax, S. Kochen, “Diophantine problems over local fields. II. A complete set of axioms for $p$-adic number theory”, Amer. J. Math., 87:3 (1965), 631–648 | DOI | MR | Zbl

[34] Yu. L. Ershov, “On the elementary theory of maximal normed fields”, Soviet Math. Dokl., 6 (1965), 1390–1393 | MR | Zbl

[35] Yu. L. Ershov, “Ob elementarnoi teorii maksimalnykh normirovannykh polei”, Algebra i logika, 4:3 (1965), 31–70 | Zbl

[36] Yu. L. Ershov, “Ob elementarnykh teoriyakh lokalnykh polei”, Algebra i logika, 4:2 (1965), 5–30 | Zbl

[37] Yu. L. Ershov, “Elementarnye teorii polei”, Mezhdunarodnyi kongress matematikov. Tezisy dokladov po priglasheniyu (Moskva, 1966), 143–145

[38] Yu. L. Ershov, “Ob elementarnoi teorii maksimalnykh normirovannykh polei. II”, Algebra i logika, 5:1 (1966), 5–40 | MR | Zbl

[39] Yu. L. Ershov, “Fields with a solvable theory”, Soviet Math. Dokl., 8 (1967), 575–576 | MR | Zbl

[40] J. Ax, “Solving Diophantine problems modulo every prime”, Ann. of Math. (2), 85:2 (1967), 161–183 | DOI | MR | Zbl

[41] J. Ax, “The elementary theory of finite fields”, Ann. of Math. (2), 88:2 (1968), 239–271 | DOI | MR | Zbl

[42] P. J. Cohen, “Decision procedures for real and $p$-adic fields”, Comm. Pure Appl. Math., 22 (1969), 131–151 | DOI | MR | Zbl

[43] L. Blum, “Differentially closed fields: a model-theoretic tour”, Contributions to algebra (collection of papers dedicated to Ellis Kolchin), Academic Press, New York, 1977, 37–61 | MR | Zbl

[44] L. van den Dries, Model theory of fields, PhD Thesis, Utrecht, 1978

[45] Yu. L. Ershov, “Regularly closed fields”, Soviet Math. Dokl., 21:2 (1980), 510–512 | MR | Zbl

[46] G. Cherlin, L. van den Dries, A. Macintyre, The elementary theory of regularly closed fields, Preprint, 1980

[47] R. S. Rumely, “Undecidability and definability for the theory of global fields”, Trans. Amer. Math. Soc., 262:1 (1980), 195–217 | DOI | MR | Zbl

[48] Yu. L. Ershov, “Undecidability of regularly closed fields”, Algebra Logic, 20:4 (1981), 257–260 | MR | Zbl

[49] Yu. L. Ershov, “On the elementary theories of regularly closed fields”, Soviet. Math. Dokl., 23:2 (1981), 259–262 | MR | Zbl

[50] G. Cherlin, L. van den Dries, A. Macintyre, “Decidability and undecidability theorems for $PAC$-fields”, Bull. Amer. Math. Soc. (N. S.), 4:1 (1981), 101–104 | DOI | MR | Zbl

[51] A. Prestel, “Pseudo real closed fields”, Set theory and model theory (Bonn, 1979), Lecture Notes in Math., 872, Springer, Berlin–New York, 1981, 127–156 | DOI | MR | Zbl

[52] Yu. L. Ershov, “Multiply valued fields”, Russian Math. Surveys, 37:3 (1982), 63–107 | DOI | MR | Zbl

[53] Yu. L. Ershov, “Regularly $r$-closed fields”, Soviet Math. Dokl., 26:2 (1982), 363–366 | MR | Zbl

[54] Yu. L. Ershov, “Two theorems on regularly $r$-closed fields”, J. Reine Angew. Math., 347 (1984), 154–167 | DOI | MR | Zbl

[55] J. Denef, “The rationality of the Poincaré series associated to the $p$-adic points on a variety”, Invent. Math., 71:1 (1984), 1–23 | DOI | MR | Zbl

[56] J.-I. Igusa, “Some observations on higher degree characters”, Amer. J. Math., 99:2 (1977), 393–417 | DOI | MR | Zbl

[57] A. Macintyre, “On definable subsets of $p$-adic fields”, J. Symbolic Logic, 41:3 (1976), 605–610 | DOI | MR | Zbl

[58] J. Ax, S. Kochen, “Diophantine problems over local fields. III. Decidable fields”, Ann. of Math. (2), 83:3 (1966), 437–456 | DOI | MR | Zbl

[59] R. S. Rumely, “Arithmetic over the ring of all algebraic integers”, J. Reine Angew. Math., 368 (1986), 127–133 | DOI | MR | Zbl

[60] L. van den Dries, “Elimination theory for the ring of algebraic integers”, J. Reine Angew. Math., 388 (1988), 189–205 | DOI | MR | Zbl

[61] C. Grob, Die Entscheidbarkeit der Theorie der maximalen pseudo-$p$-adisch abgeschlossen Körper, PhD Thesis, Konstanz, 1988

[62] E. Hrushovski, “The Mordell–Lang conjecture for function fields”, J. Amer. Math. Soc., 9:3 (1996), 667–690 | DOI | MR | Zbl

[63] A. Macintyre, A. J. Wilkie, “On the decidability of the real exponential field”, Kreiseliana, AK Peters, Wellesley, MA, 1996, 441–467 | MR | Zbl

[64] A. Macintyre, “Generic automorphisms of fields”, Joint AILA-KGS Model Theory Meeting (Florence, 1995), Ann. Pure Appl. Logic, 88, no. 2–3, 1997, 165–180 | DOI | MR | Zbl

[65] E. Bouscaren (ed.), Model theory and algebraic geometry. An introduction to E. Hrushovski's proof of geometric Mordell–Lang conjecture, Lecture Notes in Math., 1696, Springer-Verlag, Berlin, 1998, 211 pp. | DOI | MR | Zbl

[66] Z. Chatzidakis, E. Hrushovski, “Model theory for difference fields”, Trans. Amer. Math. Soc., 351:8 (1999), 2997–3071 | DOI | MR | Zbl

[67] E. Hrushovski, “Manin–Mumford conjecture and the model theory of difference fields”, Ann. Pure Appl. Logic, 112:1 (2001), 43–115 | DOI | MR | Zbl

[68] L. van den Dries, A. Macintyre, “The logic of Rumely's local-global principle”, J. Reine Angew. Math., 407 (1990), 33–56 | DOI | MR | Zbl

[69] B. Green, F. Pop, P. Roguette, “On Rumely's local-global principle”, Jahresber. Deutsch. Math.-Verein., 97:2 (1995), 43–74 | MR | Zbl

[70] Yu. L. Ershov, Multivalued fields, Siberian School of Algebra and Logic, Kluwer, New York, NY, 2001, 270 pp. | Zbl

[71] L. Darnière, “Decidability and local-global principles”, Hilbert's tenth problem: relations with arithmetic and algebraic geometry (Ghent, 1999), Contemp. Math., 270, Amer. Math. Soc., Providence, RI, 2000, 139–167 | MR | Zbl

[72] Yu. L. Ershov, “O ratsionalnykh tochkakh nad genzelevymi polyami”, Algebra i logika, 6:3 (1967), 39–49 | Zbl

[73] Yu. L. Ershov, “On amazing extensions of the field of rational numbers”, Dokl. Math., 62:1 (2000), 8–9 | MR | Zbl

[74] Yu. L. Ershov, “Good extensions and global class field theory”, Dokl. Math., 67:1 (2003), 21–23 | MR | Zbl

[75] Yu. L. Ershov, “Subfields of the adele ring”, Algebra Logic, 48:6 (2009), 418–425 | DOI | MR