A geometric description of epimorphic subgroups
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 65 (2010) no. 5, pp. 989-990 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{RM_2010_65_5_a11,
     author = {A. V. Petukhov},
     title = {A geometric description of epimorphic subgroups},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {989--990},
     year = {2010},
     volume = {65},
     number = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2010_65_5_a11/}
}
TY  - JOUR
AU  - A. V. Petukhov
TI  - A geometric description of epimorphic subgroups
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2010
SP  - 989
EP  - 990
VL  - 65
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/RM_2010_65_5_a11/
LA  - en
ID  - RM_2010_65_5_a11
ER  - 
%0 Journal Article
%A A. V. Petukhov
%T A geometric description of epimorphic subgroups
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2010
%P 989-990
%V 65
%N 5
%U http://geodesic.mathdoc.fr/item/RM_2010_65_5_a11/
%G en
%F RM_2010_65_5_a11
A. V. Petukhov. A geometric description of epimorphic subgroups. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 65 (2010) no. 5, pp. 989-990. http://geodesic.mathdoc.fr/item/RM_2010_65_5_a11/

[1] F. D. Grosshans, Algebraic homogeneous spaces and invariant theory, Lecture Notes in Math., 1673, Springer-Verlag, Berlin, 1997 | DOI | MR | Zbl

[2] F. Bien, A. Borel, C. R. Acad. Sci. Paris. Ser. I Math., 315 (1992), 1341–1346 | MR | Zbl