The Burnside problem and related topics
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 65 (2010) no. 5, pp. 805-855 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper gives a survey of results related to the famous Burnside problem on periodic groups. A negative solution of this problem was first published in joint papers of P. S. Novikov and the author in 1968. The theory of transformations of words in free periodic groups that was created in these papers and its various modifications give a very productive approach to the investigation of hard problems in group theory. In 1950 the Burnside problem gave rise to another problem on finite periodic groups, formulated by Magnus and called by him the restricted Burnside problem. Here it is called the Burnside–Magnus problem. In the Burnside problem the question of local finiteness of periodic groups of a given exponent was posed, but the Burnside–Magnus problem is the question of the existence of a maximal finite periodic group $R(m,n)$ of a fixed period $n$ with a given number $m$ of generators. These problems complement each other. The publication in a joint paper by the author and Razborov in 1987 of the first effective proof of the well-known result of Kostrikin on the existence of a maximal group $R(m,n)$ for any prime $n$, together with an indication of primitive recursive upper bounds for the orders of these groups, stimulated investigations of the Burnside–Magnus problem as well. Very soon other effective proofs appeared, and then Zel'manov extended Kostrikin's result to the case when $n$ is any power of a prime number. These results are discussed in the last section of this paper. Bibliography: 105 titles.
Keywords: Burnside problem, infinite periodic group, finiteness, periodic word, simultaneous induction, identities in groups, Burnside–Magnus problem, Engel condition.
Mots-clés : Lie algebras
@article{RM_2010_65_5_a1,
     author = {S. I. Adian},
     title = {The {Burnside} problem and related topics},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {805--855},
     year = {2010},
     volume = {65},
     number = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2010_65_5_a1/}
}
TY  - JOUR
AU  - S. I. Adian
TI  - The Burnside problem and related topics
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2010
SP  - 805
EP  - 855
VL  - 65
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/RM_2010_65_5_a1/
LA  - en
ID  - RM_2010_65_5_a1
ER  - 
%0 Journal Article
%A S. I. Adian
%T The Burnside problem and related topics
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2010
%P 805-855
%V 65
%N 5
%U http://geodesic.mathdoc.fr/item/RM_2010_65_5_a1/
%G en
%F RM_2010_65_5_a1
S. I. Adian. The Burnside problem and related topics. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 65 (2010) no. 5, pp. 805-855. http://geodesic.mathdoc.fr/item/RM_2010_65_5_a1/

[1] W. Burnside, “On an unsettled question in the theory of discontinuous groups”, Quart. J. Pure Appl. Math., 33 (1902), 230–238 | Zbl

[2] I. N. Sanov, “Reshenie problemy Bernsaida dlya pokazatelya 4”, Uchenye zapiski LGU. Ser. matem., 10 (1940), 166–170 | MR | Zbl

[3] M. Hall Jr., “Solution of the Burnside problem for exponent six”, Illinois J. Math., 2:4 (1958), 764–786 | MR | Zbl

[4] W. Burnside, “On criteria for the finiteness of the order of a group of linear substitutions”, Proc. London Math. Soc., 3 (1905), 435–440 | DOI | Zbl

[5] I. Schur, “Über Gruppen periodisher linearer Substitutionen”, Berl. Ber., 1911, 619–627 | Zbl

[6] A. G. Kurosh, “Problemy teorii kolets, svyazannye s problemoi Bernsaida o periodicheskikh gruppakh”, Izv. AN SSSR. Ser. matem., 5:3 (1941), 233–240 | MR | Zbl

[7] M. F. Newman, “Bibliography”, Burnside groups (Proc. Workshop, Univ. Bielefeld, Bielefeld, 1977), Lecture Notes in Math., 806, Springer, Berlin, 1980, 255–271 http://www.springerlink.com/content/978-3-540-10006-5/back-matter.pdf | MR | Zbl

[8] P. S. Novikov, S. I. Adjan, “Infinite periodic groups. I”, Math. USSR Izv., 2:1 (1968), 209–236 | DOI | DOI | DOI | MR | MR | MR | Zbl

[9] P. S. Novikov, S. I. Adjan, “Infinite periodic groups. II”, Math. USSR Izv., 2:2 (1968), 241–479 | DOI | DOI | DOI | MR | MR | MR | Zbl

[10] P. S. Novikov, S. I. Adjan, “Infinite periodic groups. III”, Math. USSR Izv., 2:3 (1968), 665–685 | DOI | DOI | DOI | MR | MR | MR | Zbl

[11] S. I. Adian, The Burnside problem and identities in groups, Ergeb. Math. Grenzgeb., 95, Springer-Verlag, Berlin–New York, 1979, 311 pp. | MR | MR | Zbl | Zbl

[12] B. Chandler, W. Magnus, The history of combinatorial group theory. A case study in the history of ideas, Stud. Hist. Math. Phys. Sci., 9, Springer-Verlag, New York, 1982, 234 pp. | MR | MR | Zbl | Zbl

[13] W. Magnus, “A connection between the Baker–Hausdorff formula and a problem of Burnside”, Ann. of Math. (2), 52:1 (1950), 111–126 | DOI | MR | Zbl

[14] W. Magnus, A. Karrass, D. Solitar, Combinatorial group theory: Presentations of groups in terms of generators and relations, Interscience, New York–London–Sydney, 1966, 444 pp. | MR | MR | Zbl | Zbl

[15] I. N. Sanov, “Ustanovlenie svyazi mezhdu periodicheskimi gruppami s periodom prostym chislom i koltsami Li”, Izv. AN SSSR. Ser. matem., 16:1 (1952), 23–58 | MR | Zbl

[16] S. I. Adjan, “Normal subgroups of free periodic groups”, Math. USSR-Izv., 19:2 (1982), 215–229 | DOI | MR | Zbl

[17] A. I. Kostrikin, “Lie rings satisfying the Engel condition”, Amer. Math. Soc. Transl. (2), 45 (1965), 191–220 | MR | Zbl | Zbl

[18] A. I. Kostrikin, “The Burnside problem”, Amer. Math. Soc. Transl. (2), 36 (1964), 63–99 | MR | Zbl | Zbl

[19] P. S. Novikov, “On periodic groups”, Amer. Math. Soc. Transl. (2), 45 (1965), 19–22 | MR | Zbl | Zbl

[20] A. G. Kurosh, Teoriya grupp, 2-e izd., Gostekhizdat, M., 1953, 467 pp. ; 3-Рμ РёР·Рґ., Наука, Рњ., 1967, 648 СЃ. ; A. G. Kurosh, The theory of groups, Chelsea Publishing, New York, 1960 | MR | Zbl | Zbl | MR

[21] E. S. Golod, “O nil-algebrakh i finitno-approksimiruemykh $p$-gruppakh”, Izv. AN SSSR. Ser. matem., 28:2 (1964), 273–276 | MR | Zbl

[22] S. V. Aleshin, “Finite automata and the Burnside problem for periodic groups”, Math. Notes, 11 (1972), 199–203 | MR | Zbl | Zbl

[23] R. I. Grigorchuk, “Burnside's problem on periodic groups”, Funct. Anal. Appl., 14:1 (1980), 41–43 | DOI | MR | Zbl | Zbl

[24] S. A. Adyan, “Studies in the Burnside problem and related questions”, Proc. Steklov Inst. Math., 186 (1986), 179–205 | MR | Zbl | Zbl

[25] A. I. Kostrikin, “Sandwiches in Lie algebras”, Math. USSR-Sb., 38:1 (1981), 1–9 | DOI | MR | Zbl | Zbl

[26] J. L. Britton, “The existence of infinite Burnside groups”, Word problems: decision problems and the Burnside problem in group theory (Conf., Univ. California, Irvine, CA, 1969), Stud. Logic Found. Math., 71, North-Holland, Amsterdam, 1973, 67–348 | DOI | MR | Zbl

[27] A. I. Kostrikin, Around Burnside, Ergeb. Math. Grenzgeb. (3), 20, Springer-Verlag, Berlin, 1990, 220 pp. | MR | MR | Zbl | Zbl

[28] S. I. Adian, A. A. Razborov, “Periodic groups and Lie algebras”, Russian Math. Surveys, 42:2 (1987), 1–81 | DOI | MR | Zbl

[29] S. I. Adjan, “On some torsion-free groups”, Math. USSR-Izv., 5:3 (1971), 475–484 | DOI | MR | Zbl

[30] S. I. Adyan, “Periodic products of groups”, Proc. Steklov Inst. Math., 142 (1979), 1–19 | MR | Zbl

[31] S. I. Adjan, “The simplicity of periodic products of groups”, Soviet Math. Dokl., 19:4 (1978), 910–913 | MR | Zbl

[32] S. I. Adyan, “Esche raz o periodicheskikh proizvedeniyakh grupp i probleme A. I. Maltseva”, Matem. zametki, 88:6 (2010), 803–809

[33] V. L. Širvanjan, “Independent systems of defining relations for a free periodic group of odd exponent”, Math. USSR-Sb., 29:1 (1976), 119–122 | DOI | MR | Zbl

[34] A. Yu. Ol'shanskii, “On the Novikov–Adyan theorem”, Math. USSR-Sb., 46:2 (1983), 203–236 | DOI | MR | Zbl

[35] P. S. Novikov, S. I. Adjan, “Defining relations and the word problem for free periodic groups of odd order”, Math. USSR-Izv., 2:4 (1968), 935–942 | DOI | MR | Zbl

[36] P. S. Novikov, S. I. Adjan, “On Abelian subgroups and the conjugacy problem in free periodic groups of odd order”, Math. USSR-Izv., 2:5 (1968), 1131–1144 | DOI | MR | Zbl

[37] S. I. Adyan, “The subgroups of free periodic groups of odd exponent”, Proc. Steklov Inst. Math., 112 (1971), 61–69 | MR | Zbl

[38] R. Baer, “Endlichkeitskriterien für Kommutatorgruppen”, Math. Ann., 124:1 (1952), 161–177 | DOI | MR | Zbl

[39] V. L. Širvanjan, “Embedding the group $\mathbf B(\infty,n)$ in the group $\mathbf B(2,n)$”, Math. USSR-Izv., 124:1 (1976), 161–177 | DOI | MR | Zbl

[40] R. I. Grigorchuk, “Degrees of growth of finitely generated groups, and the theory of invariant means”, Math. USSR-Izv., 25:2 (1985), 259–300 | DOI | MR | Zbl

[41] S. I. Adyan, “Random walks on free periodic groups”, Math. USSR-Izv., 21:3 (1983), 425–434 | DOI | MR | Zbl | Zbl

[42] S. I. Adyan, “An axiomatic method of constructing groups with given properties”, Russian Math. Surveys, 32:1 (1977), 1–14 | DOI | MR | Zbl | Zbl

[43] H. Kesten, “Symmetric random walks on groups”, Trans. Amer. Math. Soc., 92:2 (1959), 336–354 | DOI | MR | Zbl

[44] A. Yu. Olshanskii, M. V. Sapir, “Non-amenable finitely presented torsion-by-cyclic groups”, Publ. Math. Inst. Hautes Études Sci., 96 (2003), 43–169 http://www.numdam.org/item?id=PMIHES_2003__96__43_0 | MR | Zbl

[45] N. Monod, N. Ozawa, “The Dixmier problem, lamplighters and Burnside groups”, J. Funct. Anal., 258:1 (2010), 255–259 | DOI | MR | Zbl

[46] S. I. Adian, “On the word problem for groups defined by periodic relations”, Burnside groups (Proc. Workshop, Univ. Bielefeld, 1977), Lecture Notes in Math., 806, Springer, Berlin, 1980, 41–46 | DOI | MR | Zbl

[47] S. I. Adyan, “Groups with periodic defining relations”, Math. Notes, 83:3 (2008), 293–300 | DOI | MR | Zbl

[48] I. G. Lysënok, “On some algorithmic properties of hyperbolic groups”, Math. USSR-Izv., 35:1 (1990), 145–163 | DOI | MR | Zbl | Zbl

[49] S. I. Adyan, I. G. Lysionok, “The method of classification of periodic words and the Burnside problem”, Proceedings of the International Conference on Algebra, v. 1, Contemp. Math., 131, Amer. Math. Soc., Providence, RI, 1992, 13–28 | MR | Zbl

[50] S. I. Adjan, “Infinite irreducible systems of group identities”, Soviet Math. Dokl., 11 (1970), 113–115 | MR | Zbl

[51] S. I. Adjan, “Infinite irreducible systems of group identities”, Math. USSR-Izv., 4:4 (1970), 721–739 | DOI | MR | Zbl

[52] A. J. Ol'šanskii, “On the problem of a finite basis of identities in groups”, Math. USSR-Izv., 4:2 (1970), 381–389 | DOI | MR | Zbl

[53] Ju. G. Kleiman, “On a basis of the product of varieties of groups”, Math. USSR-Izv., 7:1 (1973), 91–94 | DOI | MR | Zbl

[54] H. Neumann, Varieties of groups, Springer-Verlag, New York, 1967, 192 pp. | MR | MR

[55] S. I. Adian, “Classifications of periodic words and their application in group theory”, Burnside groups (Proc. Workshop, Univ. Bielefeld, 1977), Lecture Notes in Math., 806, Springer, Berlin, 1980, 1–40 | DOI | MR | Zbl

[56] G. A. Jones, “Varieties and simple groups”, J. Austral. Math. Soc., 17:2 (1974), 163–173 | DOI | MR | Zbl

[57] S. V. Ivanov, “On periodic products of groups”, Internat. J. Algebra Comput., 5:1 (1995), 7–17 | DOI | MR | Zbl

[58] A. Yu. Ol'shanskii, “A. I. Mal'tsev's problem on operations over groups”, J. Soviet Math., 51:4 (1990), 2468–2486 | DOI | MR | Zbl

[59] S. I. Adyan, A. A. Fridman, V. P. Ledenëv, V. M Tikhomirov, “Yuri Il'ich Khmelevskii (on the sixtieth anniversary of his birth)”, Russian Math. Surveys, 52:4 (1997), 875–880 | DOI | MR | Zbl

[60] Yu. I. Khmelevskii, “K desyatoi probleme Gilberta”, Problemy Gilberta, ed. P. S. Aleksandrov, Nauka, M., 1969, 141–153 http://math.ru/lib/377 | MR

[61] R. C. Lindon, P. E. Shupp, Combinatorial group theory, Ergeb. Math. Grenzgeb., 89, Springer-Verlag, Berlin–New York, 1977, 339 pp. | MR | MR | Zbl | Zbl

[62] A. J. Ol'šanskii, “An infinite simple Noetherian group without torsion”, Math. USSR-Izv., 15:3 (1980), 531–588 | DOI | MR | Zbl | Zbl

[63] E. Rips, “Generalized small cancellation theory and its application I: The word problem”, Israel J. Math., 41:1–2 (1982), 1–146 | DOI | MR | Zbl

[64] A. Yu. Ol'shanskii, “Groups of bounded period with subgroups of prime order”, Algebra Logic, 21:5 (1982), 369–418 | DOI | MR | Zbl

[65] A. J. Ol'šanskii, “An infinite group with subgroups of prime orders”, Math. USSR-Izv., 16:2 (1981), 279–289 | DOI | MR | Zbl

[66] A. Yu. Ol'shanskii, Geometry of defining relations in groups, Math. Appl. (Soviet Ser.), 70, Kluwer, Dordrecht, 1991, 505 pp. | MR | MR | Zbl | Zbl

[67] V. S. Atabekyan, S. V. Ivanov, Dva zamechaniya o gruppakh ogranichennogo perioda, Dep. VINITI 2243-V87

[68] S. I. Adyan, I. G. Lysënok, “On groups all of whose proper subgroups are finite cyclic”, Math. USSR-Izv., 39:2 (1992), 905–957 | DOI | MR | Zbl

[69] V. S. Guba, “A finitely generated complete group”, Math. USSR-Izv., 29:2 (1987), 233–277 | DOI | MR | Zbl

[70] V. S. Guba, “A finitely generated simple group with free $2$-generated subgroups”, Siberian Math. J., 27:5 (1986), 670–684 | DOI | MR | Zbl

[71] S. V. Ivanov, “The free Burnside groups of sufficiently large exponents”, Internat. J. Algebra Comput., 4:1–2 (1994), 1–308 | DOI | MR | Zbl

[72] I. G. Lysenok, “Infinite Burnside groups of even exponent”, Izv. Math., 60:3 (1996), 453–654 | DOI | MR | Zbl

[73] S. V. Ivanov, “On the Burnside problem on periodic groups”, Bull. Amer. Math. Soc. (N. S.), 27:2 (1992), 257–260 ; arXiv: math/9210221 | DOI | MR | Zbl

[74] I. G. Lysenok, “The infinitude of Burnside groups of period $2k$ for $k\ge 13$”, Russian Math. Surveys, 47:2 (1992), 229–230 | DOI | MR | Zbl

[75] I. G. Lysenok, “Burnside structures of finite subgroups”, Izv. Math., 71:5 (2007), 939–965 | DOI | MR | Zbl

[76] S. V. Ivanov, A. Yu. Olshanskii, “Some applications of graded diagrams in combinatorial group theory”, Groups–St. Andrews 1989, v. 2, London Math. Soc. Lecture Note Ser., 160, Cambridge Univ. Press, Cambridge, 1991, 258–308 | MR | Zbl

[77] “Petr Sergeevič Novikov (On the seventieth anniversary of his birth)”, Math. USSR-Izv., 5:6 (1971), 1193–1194 | DOI | Zbl

[78] W. Feit, J. G. Thompson, “Solvability of groups of odd order”, Pacific J. Math., 13:3 (1963), 775–787 http://projecteuclid.org/euclid.pjm/1103053943 | MR | Zbl

[79] A. Yu. Ol'shanskii, “Periodic factor groups of hyperbolic groups”, Math. USSR-Sb., 72:2 (1992), 519–541 | DOI | MR | Zbl

[80] S. V. Ivanov, A. Yu. Olshanskii, “Hyperbolic groups and their quotients of bounded exponents”, Trans. Amer. Math. Soc., 348:6 (1996), 2091–2138 | DOI | MR | Zbl

[81] S. V. Ivanov, A. Yu. Olshanskii, “On finite and locally finite subgroups of free Burnside groups of large even exponents”, J. Algebra, 195:1 (1997), 241–284 | DOI | MR | Zbl

[82] V. S. Atabekyan, “On periodic groups of odd period $n\ge 1003 $”, Math. Notes, 82:3–4 (2007), 443–447 | DOI | MR | Zbl

[83] V. N. Obraztsov, “On a problem of P. Hall about groups isomorphic to all their non-trivial normal subgroups”, Proc. London Math. Soc. (3), 75:1 (1997), 79–98 | DOI | MR | Zbl

[84] D. V. Osin, “Uniform non-amenability of free Burnside groups”, Arch. Math. (Basel), 88:5 (2007), 403–412 | DOI | MR | Zbl

[85] V. S. Atabekyan, “Uniform nonamenability of subgroups of free Burnside groups of odd period”, Math. Notes, 85:3–4 (2009), 496–502 | DOI | MR | Zbl

[86] V. D. Mazurov, Yu. I. Merzlyakov, V. A. Chirkin, Kourovskaya tetrad. Nereshennye voprosy teorii grupp, izd. 7, Izd-vo In-ta matem. SO AN SSSR, Novosibirsk, 1980, 144 pp. | MR | Zbl

[87] A. Yu. Ol'shanskii, “Self-normalization of free subgroups in the free Burnside groups”, Groups, rings, Lie and Hopf algebras (St. John's, NF, 2001), Math. Appl., 555, Kluwer, Dordrecht, 2003, 179–187 | MR | Zbl

[88] V. S. Atabekyan, “Normalizatory svobodnykh podgrupp svobodnykh bernsaidovykh grupp nechëtnogo perioda $n\ge1003$”, Fundam. i prikl. matem., 15:1 (2009), 3–21

[89] V. S. Atabekian, “On subgroups of free Burnside groups of odd exponent $n\ge1003$”, Izv. Math., 73:5 (2009), 861–892 | DOI | MR | Zbl

[90] V. S. Atabekyan, “Monomorphisms of free Burnside groups”, Math. Notes, 86:3–4 (2009), 457–462 | DOI | MR | Zbl

[91] E. A. Cherepanov, “Normal automorphisms of free Burnside groups of large odd exponents”, Internat. J. Algebra Comput., 16:5 (2006), 839–847 | DOI | MR | Zbl

[92] V. S. Atabekyan, “Normalnye avtomorfizmy svobodnykh bernsaidovykh grupp”, Izv. RAN. Ser. matem., 2011 (to appear)

[93] W. Magnus, “Beziehungen zwischen Gruppen und Idealen in einem speziellen Ring”, Math. Ann., 111:1 (1935), 259–280 | DOI | MR | Zbl

[94] W. Magnus, “Über Gruppen und zugeordnete Liesche Ringe”, J. Reine Angew. Math., 182 (1940), 142–149 | DOI | MR | Zbl

[95] O. Grün, “Zusammenhang zwischen Potenzbildung und Kommutatorbildung”, J. Reine Angew. Math., 182 (1940), 150–155 | DOI | MR | Zbl

[96] H. Zassenhaus, “Über Lie'sche Ringe mit Primzahlcharakteristik”, Abh. Math. Sem. Hans. Univ. Hamburg, 13:1 (1939), 1–100 | DOI | Zbl

[97] M. Vaughan-Lee, E. I. Zel'manov, “Bounds in the restricted Burnside problem”, J. Austral. Math. Soc. Ser. A, 67 (1999), 261–271 | DOI | MR | Zbl

[98] P. Hall, G. Higman, “On the $p$-length of $p$-soluble groups and reduction theorems for Burnside's problem”, Proc. London Math. Soc. (3), 6:3 (1956), 1–42 | DOI | MR | Zbl

[99] S. I. Adyan, N. N. Repin, “An exponential lower bound on the step of nilpotency of Engel Lie algebras”, Math. Notes, 39:3–4 (1986), 244–249 | DOI | MR | Zbl

[100] S. I. Adyan, N. N. Repin, “Lower estimates of the order of maximal periodic groups of prime period”, Math. Notes, 44:2 (1988), 571–579 | DOI | MR | Zbl

[101] P. Hall, “A contribution to the theory of groups of prime-power exponent order”, Proc. London Math. Soc., 36 (1934), 29–95 | DOI | Zbl

[102] M. Hall Jr., “The theory of groups”, Macmillan, New York, 1959, 434 pp. | MR | Zbl | Zbl

[103] M. F. Newman, G. E. Wall, “Book Review: Around Burnside. Book Review: The restricted Burnside problem”, Bull. Amer. Math. Soc. (N.S.), 28:1 (1993), 157–161 | MR

[104] M. Vaughan-Lee, The restricted Burnside problem, London Math. Soc. Monogr. (N.S.), 5, The Clarendon Press, Oxford Univ. Press, New York, 1990, 209 pp. | MR | Zbl

[105] E. I. Zel'manov, “Solution of the restricted Burnside problem for groups of odd exponent”, Math. USSR-Izv., 36:1 (1991), 41–60 | DOI | MR | Zbl

[106] E. I. Zel'manov, “A solution of the restricted Burnside problem for 2-groups”, Math. USSR-Sb., 72:2 (1992), 543–565 | DOI | MR | Zbl

[107] M. Vaughan-Lee, E. I. Zel'manov, “Upper bounds in the restricted Burnside problem”, J. Algebra, 162:1 (1993), 107–145 | DOI | MR | Zbl