On a Friedrichs-type inequality in a three-dimensional domain aperiodically perforated along a part of the boundary
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 65 (2010) no. 4, pp. 788-790 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{RM_2010_65_4_a8,
     author = {Yu. O. Koroleva},
     title = {On a {Friedrichs-type} inequality in a~three-dimensional domain aperiodically perforated along a~part of the boundary},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {788--790},
     year = {2010},
     volume = {65},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2010_65_4_a8/}
}
TY  - JOUR
AU  - Yu. O. Koroleva
TI  - On a Friedrichs-type inequality in a three-dimensional domain aperiodically perforated along a part of the boundary
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2010
SP  - 788
EP  - 790
VL  - 65
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/RM_2010_65_4_a8/
LA  - en
ID  - RM_2010_65_4_a8
ER  - 
%0 Journal Article
%A Yu. O. Koroleva
%T On a Friedrichs-type inequality in a three-dimensional domain aperiodically perforated along a part of the boundary
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2010
%P 788-790
%V 65
%N 4
%U http://geodesic.mathdoc.fr/item/RM_2010_65_4_a8/
%G en
%F RM_2010_65_4_a8
Yu. O. Koroleva. On a Friedrichs-type inequality in a three-dimensional domain aperiodically perforated along a part of the boundary. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 65 (2010) no. 4, pp. 788-790. http://geodesic.mathdoc.fr/item/RM_2010_65_4_a8/

[1] G. A. Chechkin, Yu. O. Koroleva, A. Meidell, L.-E. Persson, Russ. J. Math. Phys., 16:1 (2009), 1–16 | DOI | MR | Zbl

[2] V. P. Mikhailov, Differentsialnye uravneniya v chastnykh proizvodnykh, Nauka, M., 1983 | MR