Separated set-systems and their geometric models
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 65 (2010) no. 4, pp. 659-740
Voir la notice de l'article provenant de la source Math-Net.Ru
This paper discusses strongly and weakly separated set-systems as well as rhombus tilings and wiring diagrams which are used to produce such systems. In particular, the Leclerc–Zelevinsky conjectures concerning weakly separated systems are proved.
Bibliography: 54 titles.
Keywords:
Laurent phenomenon, wiring, total positivity, rhombus tiling, Bruhat order.
Mots-clés : Plücker relations
Mots-clés : Plücker relations
@article{RM_2010_65_4_a2,
author = {V. I. Danilov and A. V. Karzanov and G. A. Koshevoy},
title = {Separated set-systems and their geometric models},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {659--740},
publisher = {mathdoc},
volume = {65},
number = {4},
year = {2010},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2010_65_4_a2/}
}
TY - JOUR AU - V. I. Danilov AU - A. V. Karzanov AU - G. A. Koshevoy TI - Separated set-systems and their geometric models JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2010 SP - 659 EP - 740 VL - 65 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RM_2010_65_4_a2/ LA - en ID - RM_2010_65_4_a2 ER -
V. I. Danilov; A. V. Karzanov; G. A. Koshevoy. Separated set-systems and their geometric models. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 65 (2010) no. 4, pp. 659-740. http://geodesic.mathdoc.fr/item/RM_2010_65_4_a2/