Separated set-systems and their geometric models
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 65 (2010) no. 4, pp. 659-740

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper discusses strongly and weakly separated set-systems as well as rhombus tilings and wiring diagrams which are used to produce such systems. In particular, the Leclerc–Zelevinsky conjectures concerning weakly separated systems are proved. Bibliography: 54 titles.
Keywords: Laurent phenomenon, wiring, total positivity, rhombus tiling, Bruhat order.
Mots-clés : Plücker relations
@article{RM_2010_65_4_a2,
     author = {V. I. Danilov and A. V. Karzanov and G. A. Koshevoy},
     title = {Separated set-systems and their geometric models},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {659--740},
     publisher = {mathdoc},
     volume = {65},
     number = {4},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2010_65_4_a2/}
}
TY  - JOUR
AU  - V. I. Danilov
AU  - A. V. Karzanov
AU  - G. A. Koshevoy
TI  - Separated set-systems and their geometric models
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2010
SP  - 659
EP  - 740
VL  - 65
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RM_2010_65_4_a2/
LA  - en
ID  - RM_2010_65_4_a2
ER  - 
%0 Journal Article
%A V. I. Danilov
%A A. V. Karzanov
%A G. A. Koshevoy
%T Separated set-systems and their geometric models
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2010
%P 659-740
%V 65
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RM_2010_65_4_a2/
%G en
%F RM_2010_65_4_a2
V. I. Danilov; A. V. Karzanov; G. A. Koshevoy. Separated set-systems and their geometric models. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 65 (2010) no. 4, pp. 659-740. http://geodesic.mathdoc.fr/item/RM_2010_65_4_a2/