2D-Schrödinger Operator, (2+1) evolution systems and new reductions, 2D-Burgers hierarchy and inverse problem data
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 65 (2010) no. 3, pp. 580-582 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{RM_2010_65_3_a6,
     author = {P. G. Grinevich and A. E. Mironov and S. P. Novikov},
     title = {2D-Schr\"odinger {Operator,} (2+1) evolution systems and new reductions, {2D-Burgers} hierarchy and inverse problem data},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {580--582},
     year = {2010},
     volume = {65},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2010_65_3_a6/}
}
TY  - JOUR
AU  - P. G. Grinevich
AU  - A. E. Mironov
AU  - S. P. Novikov
TI  - 2D-Schrödinger Operator, (2+1) evolution systems and new reductions, 2D-Burgers hierarchy and inverse problem data
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2010
SP  - 580
EP  - 582
VL  - 65
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/RM_2010_65_3_a6/
LA  - en
ID  - RM_2010_65_3_a6
ER  - 
%0 Journal Article
%A P. G. Grinevich
%A A. E. Mironov
%A S. P. Novikov
%T 2D-Schrödinger Operator, (2+1) evolution systems and new reductions, 2D-Burgers hierarchy and inverse problem data
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2010
%P 580-582
%V 65
%N 3
%U http://geodesic.mathdoc.fr/item/RM_2010_65_3_a6/
%G en
%F RM_2010_65_3_a6
P. G. Grinevich; A. E. Mironov; S. P. Novikov. 2D-Schrödinger Operator, (2+1) evolution systems and new reductions, 2D-Burgers hierarchy and inverse problem data. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 65 (2010) no. 3, pp. 580-582. http://geodesic.mathdoc.fr/item/RM_2010_65_3_a6/

[1] S. V. Manakov, UMN, 31:5 (1976), 245–246 | MR | Zbl

[2] B. A. Dubrovin, I. M. Krichever, S. P. Novikov, Dokl. AN SSSR, 229:1 (1976), 15–18 | MR | Zbl

[3] A. P. Veselov, S. P. Novikov, Dokl. AN SSSR, 279:4 (1984), 784–788 | MR | Zbl

[4] B. G. Konopelchenko, Inverse Problems, 4:1 (1988), 151–163 | DOI | MR | Zbl

[5] P. G. Grinevich, A. E. Mironov, S. P. Novikov, arXiv: 1004.1157