Mots-clés : multidimensional Diophantine approximations
@article{RM_2010_65_3_a2,
author = {N. G. Moshchevitin},
title = {Khintchine's singular {Diophantine} systems and their applications},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {433--511},
year = {2010},
volume = {65},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2010_65_3_a2/}
}
N. G. Moshchevitin. Khintchine's singular Diophantine systems and their applications. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 65 (2010) no. 3, pp. 433-511. http://geodesic.mathdoc.fr/item/RM_2010_65_3_a2/
[1] A. Khintchine, “Über eine Klasse linearer diophantischer Approximationen”, Rendiconti Circ. Math. Palermo, 50:2 (1926), 170–195 | DOI | Zbl
[2] A. Khintchine, “Zwei Bemerkungen zu einer Arbeit des Herrn Perron”, Math. Z., 22:1 (1925), 274–284 | DOI | MR | Zbl
[3] A. Khintchine, “Zur metrischen Theorie der diophantischen Approximationen”, Math. Z., 24:1 (1926), 706–714 | DOI | MR | Zbl
[4] A. Khintchine, “Über die angenäherte Auflösung linearer Gleichungen in ganzen Zahlen”, Acta Arith., 2 (1937), 161–172 | Zbl
[5] A. Ya. Khinchin, “O zadache Chebyshëva”, Izv. AN SSSR. Ser. matem., 10:4 (1946), 281–294 | MR | Zbl
[6] A. Ya. Khinchin, “Teorema perenosa dlya singulyarnykh sistem lineinykh uravnenii”, Dokl. AN SSSR, 59:2 (1948), 217–218 | Zbl
[7] A. Ya. Khinchin, “Regulyarnye sistemy lineinykh uravnenii i obschaya zadacha Chebyshëva”, Izv. AN SSSR. Ser. matem., 12:3 (1948), 249–258 | MR | Zbl
[8] A. Ya. Khinchin, “O nekotorykh prilozheniyakh metoda dobavochnoi peremennoi”, UMN, 3:6 (1948), 188–200 | MR | Zbl
[9] V. Jarník, “Zum Khintchineschen ‘Übertragungssatz’”, Acad. Sci. URSS, 3, Trav. Inst. math., Tbilissi, 1938, 193–216 | Zbl
[10] V. Jarník, “Remarques à l'article précédent de M. Mahler”, Časopis Mat. Fysik., 68 (1939), 103–111 | Zbl
[11] V. Jarník, On linear inhomogeneous Diophantine approximations, Rozpravy II. Třidy České Akad., 51, no. 29, 1941, 21 pp. | MR | Zbl
[12] V. Jarník, “Sur les approximations diophantiques linéaires non homogènes”, Acad. Tchéque Sci. Bull. Int. Cl. Sci. Math. Nat., 47:16 (1950), 145–160 | MR
[13] V. Yarnik, “K teorii odnorodnykh lineinykh diofantovykh priblizhenii”, Chekhoslov. matem. zhurn., 4(79) (1954), 330–353 | MR | Zbl
[14] V. Jarník, “Eine Bemerkung über diophantische Approximationen”, Math. Z., 72:1 (1959), 187–191 | DOI | MR | Zbl
[15] V. Jarník, “Eine Bemerkung zum ‘Übertragungssatz’”, Bulgar. Akad. Nauk Izv. Mat. Inst., 3:2 (1959), 169–175 | MR
[16] A. Ya. Khinchin, Izbrannye trudy po teorii chisel, MTsNMO, M., 2006, 260 pp. | MR
[17] V. V. Kozlov, “Integrability and nonintegrability in Hamiltonian mechanics”, Russian Math. Surveys, 38:1 (1983), 1–76 | DOI | MR | Zbl
[18] V. V. Kozlov, N. G. Moshchevitin, “On diffusion in Hamiltonian systems”, Mosc. Univ. Mech. Bull., 52:5 (1997), 18–22 | MR | Zbl
[19] Y. Peres, W. Schlag, “Two Erdös problems on lacunary sequences: chromatic numbers and Diophantine approximations”, Bull. London Math. Soc., 42:2 (2010), 295–300, arXiv: 0706.0223v1 | DOI | Zbl
[20] W. M. Schmidt, “On badly approximable numbers and certain games”, Trans. Amer. Math. Soc., 123:1 (1966), 178–199 | DOI | MR | Zbl
[21] M. Waldschmidt, Report on some recent advances in Diophantine approximation, arXiv: 0908.3973v1
[22] J. F. Koksma, Diophantische Approximationen, Ergeb. Math. Grenzgeb., 4, Springer, Berlin, 1936, 157 pp. | MR | Zbl
[23] J. W. S. Cassels, An introduction to Diophantine approximation, Cambridge Tracts Math. Math. Phys., 45, Cambridge Univ. Press, New York, 1957, 166 pp. | MR | MR | Zbl | Zbl
[24] W. M. Schmidt, Diophantine approximation, Lecture Notes in Math., 785, Springer, Berlin, 1980, 299 pp. | MR | MR | Zbl | Zbl
[25] H. Davenport, W. M. Schmidt, “Dirichlet's theorem on Diophantine approximation. II”, Acta Arith., 16 (1970), 413–424 | MR | Zbl
[26] C. Chabauty, E. Lutz, “Sur les approximations diophantiennes linéaires réelles. I. Problème homogène”, C. R. Acad. Sci. Paris, 231 (1950), 887–888 | MR | Zbl
[27] J. Lesca, “Sur un résultat de Jarník”, Acta Arith., 11 (1966), 359–364 | MR | Zbl
[28] J. Lesca, “Existence de systèmes $p$-adiques admettant une approximation donnée”, Acta Arith., 11 (1966), 365–370 | MR | Zbl
[29] A. Apfelbeck, “A contribution to Khintchine's principle of transfer”, Czech. Math. J., 1(76) (1952), 119–147 | MR | Zbl
[30] J. S. Lagarias, “Best simultaneous Diophantine approximation. II: Behavior of consecutive best approximations”, Pacific J. Math., 102:1 (1982), 61–88 | MR | Zbl
[31] H. Davenport, W. M. Schmidt, “Approximation to real numbers by quadratic irrationals”, Acta Arith., 13 (1967), 169–176 | MR | Zbl
[32] N. G. Moshchevitin, “On best simultaneous approximations”, Russian Math. Surveys, 51:6 (1996), 1214–1215 | DOI | MR | Zbl
[33] N. G. Moshchevitin, “Best Diophantine approximations: the phenomenon of degenerate dimension”, Surveys in geometry and number theory: reports on contemporary Russian mathematics, London Math. Soc. Lecture Note Ser., 338, Cambridge Univ. Press, Cambridge, 2007, 158–182 | MR | Zbl
[34] N. G. Moschevitin, O. N. German, “Teorema o nailuchshikh diofantovykh priblizheniyakh dlya lineinoi formy”, Sbornik statei, posvyaschennyi 70-letiyu akademika V. A. Sadovnichego, Sovremennye problemy matematiki i mekhaniki, 4, no. 3, MGU, M., 2009, 130–135, arXiv: 0812.2455v1
[35] N. G. Moshchevitin, “On the geometry of best approximations”, Dokl. Math., 57:2 (1998), 261–263 | MR | Zbl
[36] A. Ya. Khinchin, Continued fractions, Univ. Chicago Press, Chicago and London, 1964, xi+95 pp. | MR | Zbl
[37] T. W. Cusick, M. E. Flahive, The Markoff and Lagrange spectra, Math. Surveys Monogr., 30, Amer. Math. Soc., Providence, RI, 1989, ix+97 pp. | MR | Zbl
[38] A. V. Malyshev, “Markov and Lagrange spectra (survey of the literature)”, J. Math. Sci., 16:1 (1981), 767–788 | DOI | MR | Zbl
[39] H. Davenport, W. M. Schmidt, “Dirichlet's theorem on Diophantine approximation”, Simposia Mathematica (INDAM, Rome, 1968/69), v. IV, Academic Press, London, 1970, 113–132 | MR | Zbl
[40] V. A. Ivanov, “Origin of the ray in the Dirichlet spectrum of a problem in the theory of Diophantine approximations”, J. Math. Sci., 19:2 (1982), 1169–1183 | DOI | MR | Zbl
[41] I. D. Kan, N. G. Moshchevitin, “Approximation to two real numbers”, Uniform Distribution Theory, 5:2 (2010), 79–86; arXiv: 0910.2428
[42] N. G. Moshchevitin, “Best simultaneous approximations: Norms, signatures, and asymptotic directions”, Math. Notes, 67:5 (2000), 618–624 | DOI | MR | Zbl
[43] M. Laurent, “Exponents of Diophantine approximation in dimension two”, Canad. J. Math., 61:1 (2009), 165–189 ; arXiv: math/0611352v1 | DOI | MR | Zbl
[44] N. G. Moshchevitin, Contribution to Vojtech Jarník, arXiv: 0912.2442v2
[45] J. W. S. Cassels, “Über $\varliminf x|x\theta+\alpha-y|$”, Math. Ann., 127:1 (1954), 288–304 | DOI | MR | Zbl
[46] E. S. Barnes, “On linear inhomogeneous Diophantine approximations”, J. London Math. Soc., 31:1 (1956), 73–79 | DOI | MR | Zbl
[47] T. W. Cusick, W. Moran, A. D. Pollington, “Hall's ray in inhomogeneous Diophantine appproximations”, J. Austral. Math. Soc. Ser. A, 60 (1996), 42–50 | DOI | MR | Zbl
[48] H. J. Godwin, “On the theorem of Khintchine”, Proc. London Math. Soc. (3), 3:1 (1953), 211–221 | DOI | MR | Zbl
[49] D. Kleinbock, “Badly approximable systems of affine forms”, J. Number Theory, 79:1 (1999), 83–102 | DOI | MR | Zbl
[50] Y. Bugeaud, S. Harrap, S. Kristensen, S. Velani, On shrinking targets for $\mathbb{Z}$ actions on tori, arXiv: 0807.3863v1
[51] J. Tseng, “Badly approhimable affine forms and Schmidt games”, J. Number Theory, 129:12 (2009), 3020–3025 | DOI | MR | Zbl
[52] M. Einsiedler, J. Tseng, Badly approximable systems of affine forms, fractals, and Schmidt games, arXiv: 0912.2445
[53] N. G. Moshchevitin, “A note on badly approximable affine forms and winning sets”, arXiv: 0812.39998
[54] D. Y. Kleinbock, G. A. Margulis, “Flows on homogeneous spaces and Diophantine approximation on manifolds”, Ann. of Math. (2), 148:1 (1998), 339–360, arXiv: math/9810036 | DOI | MR | Zbl
[55] D. Kleinbock, G. Margulis, J. Wang, Metric Diophantine approximations for systems of linear forms via dynamics, arXiv: 0904.2795v1
[56] D. Kleinbock, B. Weiss, “Modified Schmidt games and Diophantine approximation with weights”, Adv. Math., 223:4 (2010), 1276–1298, arXiv: 0805.2934v1 | DOI | MR | Zbl
[57] D. Kleinbock, B. Weiss, “Dirichlet's theorem on Diophantine approximations and homogeneous flows”, J. Mod. Dyn., 2:1 (2008), 43–62 | MR | Zbl
[58] A. Gorodnik, “Open problem in dynamics and related fields”, J. Mod. Dyn., 1:1 (2007), 1–35 | MR | Zbl
[59] W. M. Schmidt, “Diophantine approximations and certain properties of lattices”, Acta Arith., 18 (1971), 195–178 | MR | Zbl
[60] K. Mahler, “Lattice points in two-dimensional star domains. I”, Proc. London Math. Soc. (2), 49:1 (1946), 128–157 ; “Lattice points in two-dimensional star domains. II”, 158–167 ; “Lattice points in two-dimensional star domains. III”, 168–183 | DOI | MR | Zbl | DOI | MR | DOI | MR
[61] K. Mahler, “On lattice points in $n$-dimensional star bodies. I. Existence theorems”, Proc. Roy. Soc. London. Ser. A., 187 (1946), 151–187 | DOI | MR | Zbl
[62] J. W. S. Cassels, An introduction to the geometry of numbers, Grundlehren Math. Wiss., 99, Springer-Verlag, Berlin–Göttingen–Heidelberg, 1959, 344 pp. | MR | MR | Zbl | Zbl
[63] W. M. Schmidt, “Open problems in Diophantine approximations”, Diophantine approximations and transcendental numbers (Luminy, 1982), Progr. Math., 31, Birkhäuser, Boston, MA, 1983, 271–289 | MR | Zbl
[64] W. M. Schmidt, L. Summerer, “Parametric geometry of numbers and applications”, Acta Arith., 140:1 (2009), 67–91 | DOI | MR | Zbl
[65] N. G. Moshchevitin, Proof of W. M. Schmidt conjecture concerning successive minima of a lattice, arXiv: 0804.0120v1
[66] F. J. Dyson, “On simultaneous Diophantine approximations”, Proc. London Math. Soc. (2), 49:1 (1947), 409–420 | DOI | MR | Zbl
[67] K. Mahler, “On compound convex bodies. I”, Proc. London Math. Soc. (3), 5 (1955), 358–379 | DOI | MR | Zbl
[68] M. Laurent, “On transfer inequalities in Diophantine approximation”, Analytic number theory, Cambridge Univ. Press, Cambridge, 2009, 306–314, arXiv: math/0703146v1 | MR | Zbl
[69] Y. Bugeaud, M. Laurent, “On transfer inequalities in Diophantine approximation. II”, Math. Z., 265:2 (2010), 249–262, arXiv: 0811.2102v1 | DOI | Zbl
[70] N. M. Korobov, “Some problems in the theory of Diophantine approximation”, Russian Math. Surveys, 22:3 (1967), 80–118 | DOI | MR | Zbl
[71] N. M. Korobov, “An estimate of A. O. Gelfond”, Moscow Univ. Math. Bull., 38:3 (1983), 1–6 | MR | Zbl
[72] A. O. Gelfond, ““O teoreme Minkovskogo dlya lineinykh form i teoremakh perenosa””, prilozhenie k kn.: Dzh. V. S. Kassels, Vvedenie v teoriyu diofantovykh priblizhenii, IL, M., 1961, 202–209 | MR | Zbl
[73] Yu. V. Kashirskii, “Transference theorems”, Soviet Math. Dokl., 4 (1963), 505–508 | MR | Zbl
[74] C. L. Siegel, “Neuer Beweis des Satzes von Minkowski über lineare Formen”, Math. Ann., 87:1-2 (1922), 36–38 | DOI | MR | Zbl
[75] W. M. Schmidt, Y. Wang, “A note on a tranference theorem of linear forms”, Sci. Sinica, 22:3 (1979), 276–280 | MR | Zbl
[76] W. M. Schmidt, “On heights of algebraic subspaces and Diophantine approximations”, Ann. of Math. (2), 85:3 (1967), 430–472 | DOI | MR | Zbl
[77] Y. Bugeaud, M. Laurent, “On exponents of homogeneous and inhomogeneous Diophantine approximation”, Moscow Math. J., 5:4 (2005), 747–766 | MR | Zbl
[78] Y. Cheung, Hausdorff dimension of the set of singular pairs, arXiv: 0709.4534v2
[79] R. C. Baker, “Singular $n$-tuples and Hausdorff dimension. II”, Math. Proc. Cambridge Philos. Soc., 111:3 (1992), 577–584 | DOI | MR | Zbl
[80] R. C. Baker, “Singular $n$-tuples and Hausdorff dimension”, Math. Proc. Cambridge Philos. Soc., 81:3 (1977), 377–385 | DOI | MR | Zbl
[81] K. Yu. Yavid, “Otsenka razmernosti Khausdorfa mnozhestv singulyarnykh vektorov”, Dokl. AN BSSR, 31:9 (1987), 777–780 | MR | Zbl
[82] B. P. Rynne, “A lower bound for the Hausdorff dimension of sets of singular $n$-tuples”, Math. Proc. Cambridge Philos. Soc., 107:2 (1990), 387–394 | DOI | MR | Zbl
[83] B. P. Rynne, “The Hausdorff dimension of certain sets of singular $n$-tuples”, Math. Proc. Cambridge Philos. Soc., 108:1 (1990), 105–110 | DOI | MR | Zbl
[84] M. M. Dodson, “Hausdorff dimension, lower order and Khintchine's theorem in metric Diophantine approximations”, J. Reine Angew. Math., 432 (1992), 69–76 | DOI | MR | Zbl
[85] V. I. Bernik, Yu. V. Melnichuk, Diofantovy priblizheniya i razmernost Khausdorfa, Nauka i tekhnika, Minsk, 1988, 144 pp. | MR
[86] V. I. Bernik, M. M. Dodson, Metric Diophantine approximations on manifolds, Cambridge Tracts in Math., 137, Cambridge Univ. Press, Cambridge, 1999, 172 pp. | MR | Zbl
[87] W. M. Schmidt, “Two questions in Diophantine approximation”, Monatsh. Math., 82:3 (1976), 237–245 | DOI | MR | Zbl
[88] P. Thurnheer, “Zur diophantischen Approximation von zwei reellen Zahlen”, Acta Arith., 44:3 (1984), 201–206 | MR | Zbl
[89] P. Thurnheer, “On Dirichlet's theorem concerning Diophantine approximation”, Acta Arith., 54:3 (1990), 241–250 | MR | Zbl
[90] Y. Bugeaud, S. Kristensen, “Diophantine exponents for mildly restricted approximation”, Ark. Mat., 47:2 (2009), 243–266 | DOI | MR | Zbl
[91] N. G. Moshchevitin, On Diophantine approximations with positive integers: a remark to W. M. Schmidt's theorem, arXiv: 0904.1906v1
[92] H. Davenport, W. M. Schmidt, “A theorem on linear forms”, Acta Arith., 14 (1968), 209–223 | MR | Zbl
[93] H. Weyl, “Über die Gleichverteilung von Zahlen mod. Eins”, Math. Ann., 77 (1916), 313–352 | MR | Zbl | Zbl
[94] I. P. Cornfeld, S. V. Fomin, Ya. G. Sinai, Ergodic theory, Grundlehren Math. Wiss., 245, Springer-Verlag, New York, 1982, x+486 pp. | MR | MR | Zbl | Zbl
[95] Yu. Peres, “A combinatorial application of the maximal ergodic theorem”, Bull. London Math. Soc., 20:3 (1988), 248–252 | DOI | MR | Zbl
[96] P. Bohl, “On a differential equation from perturbation theory”, J. Reine Angew. Math., 131 (1906), 268–321 | DOI | MR
[97] V. V. Kozlov, “On integrals of quasiperiodic functions”, Mosc. Univ. Mech. Bull., 33:1-2 (1978), 31–38 | MR | Zbl
[98] V. V. Kozlov, Metody kachestvennogo analiza v dinamike tverdogo tela, MGU, M., 1980, 231 pp. | MR | Zbl
[99] G. Halász, “Remarks on the remainder in Birkhoff's ergodic theorem”, Acta Math. Acad. Sci. Hungar., 28:3–4 (1976), 389–395 | DOI | MR | Zbl
[100] E. A. Sidorov, “Conditions for uniform Poisson stability of cylindrical systems”, Russian Math. Surveys, 34:6 (1979), 220–224 | DOI | MR | Zbl
[101] S. V. Konyagin, “Recurrence of the integral of an odd conditionally periodic function”, Math. Notes, 61:4 (1997), 473–479 | DOI | MR | Zbl
[102] N. G. Moshchevitin, “Recurrence of the integral of a smooth conditionally periodic function”, Math. Notes, 63:5 (1998), 648–657 | DOI | MR | Zbl
[103] N. G. Moshchevitin, “Distribution of Kronecker sequence”, Algebraic number theory and Diophantine analysis (Graz, 1998), de Gruyter, Berlin, 2000, 311–329 | MR | Zbl
[104] N. G. Moschevitin, Voprosy vozvraschaemosti dinamicheskikh sistem i diofantovy priblizheniya, Dis. $\dots$ dokt. fiz.-matem. nauk, M., 2003
[105] N. G. Moshchevitin, “Nonrecursiveness of the integral of a conditionally periodic function”, Math. Notes, 49:6 (1991), 650–652 | DOI | MR | Zbl
[106] H. Poincaré, “Sur les séries trigonométriques”, Comptes Rendus, 101:2 (1886), 1131–1134 | Zbl
[107] A. Puankare, O krivykh, opredelyaemykh differentsialnymi uravneniyami, Gostekhizdat, M., L., 1947
[108] N. G. Moshchevitin, “Recurrence of the integral of a smooth three-frequency conditionally periodic function”, Math. Notes, 58:5 (1995), 1187–1196 | DOI | MR | Zbl
[109] N. G. Moshchevitin, “Distribution of values of linear functions and asymptotic behavior of trajectories of some dynamical systems”, Math. Notes, 58:3 (1995), 948–959 | DOI | MR | Zbl
[110] E. V. Kolomeikina, N. G. Moshchevitin, “Nonrecurrence in mean of sums along the Kronecker sequence”, Math. Notes, 73:1–2 (2003), 132–135 | DOI | MR | Zbl
[111] O. N. German, N. G. Moshchevitin, “Linear forms of a given Diophantine type”, J. Number Theory Bordeaux (to appear)
[112] O. N. German, “Asymptotic directions for best approximations of $n$-dimensional linear forms”, Math. Notes, 75:1–2 (2004), 51–65 | DOI | MR | Zbl
[113] P. Erdös, “Problems and results on Diophantine approximations (II)”, Répartition modulo 1 (Marseille–Luminy, 1974), Lecture Notes in Math., 475, Springer, Berlin, 1975, 89–99 | DOI | MR | Zbl
[114] A. D. Pollington, “On the density of sequence $\{n_k\theta\}$”, Illinois J. Math., 23:4 (1979), 511–515 | MR | Zbl
[115] D. de Mathan, “Numbers contravening a condition in density modulo 1”, Acta Math. Acad. Sci. Hungar., 36:3–4 (1980), 237–241 | DOI | MR | Zbl
[116] Y. Katznelson, “Chromatic numbers of Cayley graphs on $\mathbb{Z}$ and recurrence”, Combinatorica, 21:2 (2001), 211–219 | DOI | MR | Zbl
[117] R. K. Akhunzhanov, N. G. Moshchevitin, “Density modulo 1 of sublacunary sequences”, Math. Notes, 77:5–6 (2005), 741–750 | DOI | MR | Zbl
[118] A. Dubickas, “On the fractional parts of lacunary sequences”, Math. Scand., 99:1 (2006), 136–146 | MR | Zbl
[119] A. Dubickas, “An approximation by lacunary sequence of vectors”, Combin. Probab. Comput., 17:3 (2008), 339–345 | DOI | MR | Zbl
[120] N. G. Moshchevitin, A version of the proof for Peres–Schlag's theorem on lacunary sequences, arXiv: 0708.2087v2
[121] N. G. Moshchevitin, Density modulo 1 of sublacunary sequences: application of Peres–Schlag's arguments, arXiv: 0709.3419v2
[122] N. G. Moshchevitin, “On small fractional parts of polynomials”, J. Number Theory, 129:2 (2009), 349–357 | DOI | MR | Zbl
[123] N. G. Moshchevitin, “On simultaneously badly approximable numbers”, Bull. London Math. Soc., 42:1 (2010), 149–154 | DOI | MR | Zbl
[124] N. G. Moshchevitin, Badly approximable numbers related to the Littlewood conjecture, arXiv: 0810.0777
[125] I. Rochev, On distribution of fractional parts of linear forms, arXiv: 0811.1547v1
[126] Y. Bugeaud, N. Moshchevitin, Badly approximable numbers and Littlewood-type problems, arXiv: 0905.0830
[127] J. W. S. Cassels, “Some metrical theorems in Diophantine approximation. I”, Proc. Cambridge Philos. Soc., 46 (1950), 209–218 | DOI | MR | Zbl
[128] P. Gallagher, “Metric simultaneous Diophantine approximation”, J. London Math. Soc., 37:1 (1962), 387–390 | DOI | MR | Zbl
[129] H. Furstenberg, “Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation”, Math. Systems Theory, 1:1 (1967), 1–49 | DOI | MR | Zbl
[130] M. D. Boshernitzan, “Elementary proof of Furstenberg's Diophantine result”, Proc. Amer. Math. Soc., 122:1 (1994), 67–70 | DOI | MR | Zbl
[131] J. Bourgain, E. Lindenstrauss, P. Michel, A. Venkatesh, “Some effective results for $\times a\times b$”, Ergodic Theory Dynam. Systems, 29:6 (2009), 1705–1722 | DOI | MR | Zbl
[132] W. M. Schmidt, Small fractional parts of polynomials, Regional Conf. Ser. in Math., 32, Amer. Math. Soc., Providence, RI, 1977, 41 pp. | MR | Zbl
[133] A. Zaharescu, “Small values of $n^2\alpha\pmod 1$”, Invent. Math., 121:2 (1995), 379–388 | DOI | MR | Zbl
[134] D. Badziahin, A. Pollington, S. Velani, On a problem in simultaneous Diophantine approximation: Schmidt's conjecture, arXiv: 1001.2694v1
[135] Y. Bugeaud, Approximation by algebraic numbers, Cambridge Tracts in Math., 160, Cambridge Univ. Press, Cambridge, 2004 | MR | Zbl
[136] K. Falconer, Fractal geometry: Mathematical foundations and applications, Wiley, Chichester, 1990, 288 pp. | MR | Zbl
[137] N. G. Moshchevitin, “Sublacunary sequences and winning sets”, Math. Notes, 78:3–4 (2005), 592–596 | DOI | MR | Zbl
[138] W. M. Schmidt, “Badly approximable systems of linear forms”, J. Number Theory, 1:2 (1969), 139–154 | DOI | MR | Zbl
[139] R. K. Akhunzhanov, “On nonnormal numbers”, Math. Notes, 72:1–2 (2002), 135–137 | DOI | MR | Zbl
[140] R. K. Akhunzhanov, “On the distribution modulo 1 of exponential sequences”, Math. Notes, 76:1–2 (2004), 153–160 | DOI | MR | Zbl
[141] Y. Bugeaud, R. Broderick, L. Fishman, D. Kleinbock, B. Weiss, Schmidt games, fractals, and numbers normal to no base, arXiv: 0909.4251
[142] V. A. Dremov, “On domains of $(\alpha,\beta)$-winning”, Dokl. Math., 65:3 (2002), 365–368 | MR | Zbl
[143] L. Fishman, “Schmidt's game, badly approximable matrices and fractals”, J. Number Theory, 129:9 (2009), 2133–2153 | DOI | MR | Zbl
[144] C. Freiling, “An answer to a question of Schmidt on $(\alpha,\beta)$ games”, J. Number Theory, 15:2 (1982), 226–228 | DOI | MR | Zbl
[145] C. Freiling, “Some new games and badly approximable numbers”, J. Number Theory, 19:2 (1984), 195–202 | DOI | MR | Zbl