Khintchine's singular Diophantine systems and their applications
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 65 (2010) no. 3, pp. 433-511 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper is a survey of classical and recent methods in Diophantine approximation theory and its applications related to Khintchine's results on the existence of real numbers admitting extremely good approximations by rational numbers. Bibliography: 145 titles.
Keywords: Khintchine's singular systems, continued fractions, best approximations, Diophantine inequalities, transference theorems, Kozlov problem, Peres–Schlag method.
Mots-clés : multidimensional Diophantine approximations
@article{RM_2010_65_3_a2,
     author = {N. G. Moshchevitin},
     title = {Khintchine's singular {Diophantine} systems and their applications},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {433--511},
     year = {2010},
     volume = {65},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2010_65_3_a2/}
}
TY  - JOUR
AU  - N. G. Moshchevitin
TI  - Khintchine's singular Diophantine systems and their applications
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2010
SP  - 433
EP  - 511
VL  - 65
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/RM_2010_65_3_a2/
LA  - en
ID  - RM_2010_65_3_a2
ER  - 
%0 Journal Article
%A N. G. Moshchevitin
%T Khintchine's singular Diophantine systems and their applications
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2010
%P 433-511
%V 65
%N 3
%U http://geodesic.mathdoc.fr/item/RM_2010_65_3_a2/
%G en
%F RM_2010_65_3_a2
N. G. Moshchevitin. Khintchine's singular Diophantine systems and their applications. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 65 (2010) no. 3, pp. 433-511. http://geodesic.mathdoc.fr/item/RM_2010_65_3_a2/

[1] A. Khintchine, “Über eine Klasse linearer diophantischer Approximationen”, Rendiconti Circ. Math. Palermo, 50:2 (1926), 170–195 | DOI | Zbl

[2] A. Khintchine, “Zwei Bemerkungen zu einer Arbeit des Herrn Perron”, Math. Z., 22:1 (1925), 274–284 | DOI | MR | Zbl

[3] A. Khintchine, “Zur metrischen Theorie der diophantischen Approximationen”, Math. Z., 24:1 (1926), 706–714 | DOI | MR | Zbl

[4] A. Khintchine, “Über die angenäherte Auflösung linearer Gleichungen in ganzen Zahlen”, Acta Arith., 2 (1937), 161–172 | Zbl

[5] A. Ya. Khinchin, “O zadache Chebyshëva”, Izv. AN SSSR. Ser. matem., 10:4 (1946), 281–294 | MR | Zbl

[6] A. Ya. Khinchin, “Teorema perenosa dlya singulyarnykh sistem lineinykh uravnenii”, Dokl. AN SSSR, 59:2 (1948), 217–218 | Zbl

[7] A. Ya. Khinchin, “Regulyarnye sistemy lineinykh uravnenii i obschaya zadacha Chebyshëva”, Izv. AN SSSR. Ser. matem., 12:3 (1948), 249–258 | MR | Zbl

[8] A. Ya. Khinchin, “O nekotorykh prilozheniyakh metoda dobavochnoi peremennoi”, UMN, 3:6 (1948), 188–200 | MR | Zbl

[9] V. Jarník, “Zum Khintchineschen ‘Übertragungssatz’”, Acad. Sci. URSS, 3, Trav. Inst. math., Tbilissi, 1938, 193–216 | Zbl

[10] V. Jarník, “Remarques à l'article précédent de M. Mahler”, Časopis Mat. Fysik., 68 (1939), 103–111 | Zbl

[11] V. Jarník, On linear inhomogeneous Diophantine approximations, Rozpravy II. Třidy České Akad., 51, no. 29, 1941, 21 pp. | MR | Zbl

[12] V. Jarník, “Sur les approximations diophantiques linéaires non homogènes”, Acad. Tchéque Sci. Bull. Int. Cl. Sci. Math. Nat., 47:16 (1950), 145–160 | MR

[13] V. Yarnik, “K teorii odnorodnykh lineinykh diofantovykh priblizhenii”, Chekhoslov. matem. zhurn., 4(79) (1954), 330–353 | MR | Zbl

[14] V. Jarník, “Eine Bemerkung über diophantische Approximationen”, Math. Z., 72:1 (1959), 187–191 | DOI | MR | Zbl

[15] V. Jarník, “Eine Bemerkung zum ‘Übertragungssatz’”, Bulgar. Akad. Nauk Izv. Mat. Inst., 3:2 (1959), 169–175 | MR

[16] A. Ya. Khinchin, Izbrannye trudy po teorii chisel, MTsNMO, M., 2006, 260 pp. | MR

[17] V. V. Kozlov, “Integrability and nonintegrability in Hamiltonian mechanics”, Russian Math. Surveys, 38:1 (1983), 1–76 | DOI | MR | Zbl

[18] V. V. Kozlov, N. G. Moshchevitin, “On diffusion in Hamiltonian systems”, Mosc. Univ. Mech. Bull., 52:5 (1997), 18–22 | MR | Zbl

[19] Y. Peres, W. Schlag, “Two Erdös problems on lacunary sequences: chromatic numbers and Diophantine approximations”, Bull. London Math. Soc., 42:2 (2010), 295–300, arXiv: 0706.0223v1 | DOI | Zbl

[20] W. M. Schmidt, “On badly approximable numbers and certain games”, Trans. Amer. Math. Soc., 123:1 (1966), 178–199 | DOI | MR | Zbl

[21] M. Waldschmidt, Report on some recent advances in Diophantine approximation, arXiv: 0908.3973v1

[22] J. F. Koksma, Diophantische Approximationen, Ergeb. Math. Grenzgeb., 4, Springer, Berlin, 1936, 157 pp. | MR | Zbl

[23] J. W. S. Cassels, An introduction to Diophantine approximation, Cambridge Tracts Math. Math. Phys., 45, Cambridge Univ. Press, New York, 1957, 166 pp. | MR | MR | Zbl | Zbl

[24] W. M. Schmidt, Diophantine approximation, Lecture Notes in Math., 785, Springer, Berlin, 1980, 299 pp. | MR | MR | Zbl | Zbl

[25] H. Davenport, W. M. Schmidt, “Dirichlet's theorem on Diophantine approximation. II”, Acta Arith., 16 (1970), 413–424 | MR | Zbl

[26] C. Chabauty, E. Lutz, “Sur les approximations diophantiennes linéaires réelles. I. Problème homogène”, C. R. Acad. Sci. Paris, 231 (1950), 887–888 | MR | Zbl

[27] J. Lesca, “Sur un résultat de Jarník”, Acta Arith., 11 (1966), 359–364 | MR | Zbl

[28] J. Lesca, “Existence de systèmes $p$-adiques admettant une approximation donnée”, Acta Arith., 11 (1966), 365–370 | MR | Zbl

[29] A. Apfelbeck, “A contribution to Khintchine's principle of transfer”, Czech. Math. J., 1(76) (1952), 119–147 | MR | Zbl

[30] J. S. Lagarias, “Best simultaneous Diophantine approximation. II: Behavior of consecutive best approximations”, Pacific J. Math., 102:1 (1982), 61–88 | MR | Zbl

[31] H. Davenport, W. M. Schmidt, “Approximation to real numbers by quadratic irrationals”, Acta Arith., 13 (1967), 169–176 | MR | Zbl

[32] N. G. Moshchevitin, “On best simultaneous approximations”, Russian Math. Surveys, 51:6 (1996), 1214–1215 | DOI | MR | Zbl

[33] N. G. Moshchevitin, “Best Diophantine approximations: the phenomenon of degenerate dimension”, Surveys in geometry and number theory: reports on contemporary Russian mathematics, London Math. Soc. Lecture Note Ser., 338, Cambridge Univ. Press, Cambridge, 2007, 158–182 | MR | Zbl

[34] N. G. Moschevitin, O. N. German, “Teorema o nailuchshikh diofantovykh priblizheniyakh dlya lineinoi formy”, Sbornik statei, posvyaschennyi 70-letiyu akademika V. A. Sadovnichego, Sovremennye problemy matematiki i mekhaniki, 4, no. 3, MGU, M., 2009, 130–135, arXiv: 0812.2455v1

[35] N. G. Moshchevitin, “On the geometry of best approximations”, Dokl. Math., 57:2 (1998), 261–263 | MR | Zbl

[36] A. Ya. Khinchin, Continued fractions, Univ. Chicago Press, Chicago and London, 1964, xi+95 pp. | MR | Zbl

[37] T. W. Cusick, M. E. Flahive, The Markoff and Lagrange spectra, Math. Surveys Monogr., 30, Amer. Math. Soc., Providence, RI, 1989, ix+97 pp. | MR | Zbl

[38] A. V. Malyshev, “Markov and Lagrange spectra (survey of the literature)”, J. Math. Sci., 16:1 (1981), 767–788 | DOI | MR | Zbl

[39] H. Davenport, W. M. Schmidt, “Dirichlet's theorem on Diophantine approximation”, Simposia Mathematica (INDAM, Rome, 1968/69), v. IV, Academic Press, London, 1970, 113–132 | MR | Zbl

[40] V. A. Ivanov, “Origin of the ray in the Dirichlet spectrum of a problem in the theory of Diophantine approximations”, J. Math. Sci., 19:2 (1982), 1169–1183 | DOI | MR | Zbl

[41] I. D. Kan, N. G. Moshchevitin, “Approximation to two real numbers”, Uniform Distribution Theory, 5:2 (2010), 79–86; arXiv: 0910.2428

[42] N. G. Moshchevitin, “Best simultaneous approximations: Norms, signatures, and asymptotic directions”, Math. Notes, 67:5 (2000), 618–624 | DOI | MR | Zbl

[43] M. Laurent, “Exponents of Diophantine approximation in dimension two”, Canad. J. Math., 61:1 (2009), 165–189 ; arXiv: math/0611352v1 | DOI | MR | Zbl

[44] N. G. Moshchevitin, Contribution to Vojtech Jarník, arXiv: 0912.2442v2

[45] J. W. S. Cassels, “Über $\varliminf x|x\theta+\alpha-y|$”, Math. Ann., 127:1 (1954), 288–304 | DOI | MR | Zbl

[46] E. S. Barnes, “On linear inhomogeneous Diophantine approximations”, J. London Math. Soc., 31:1 (1956), 73–79 | DOI | MR | Zbl

[47] T. W. Cusick, W. Moran, A. D. Pollington, “Hall's ray in inhomogeneous Diophantine appproximations”, J. Austral. Math. Soc. Ser. A, 60 (1996), 42–50 | DOI | MR | Zbl

[48] H. J. Godwin, “On the theorem of Khintchine”, Proc. London Math. Soc. (3), 3:1 (1953), 211–221 | DOI | MR | Zbl

[49] D. Kleinbock, “Badly approximable systems of affine forms”, J. Number Theory, 79:1 (1999), 83–102 | DOI | MR | Zbl

[50] Y. Bugeaud, S. Harrap, S. Kristensen, S. Velani, On shrinking targets for $\mathbb{Z}$ actions on tori, arXiv: 0807.3863v1

[51] J. Tseng, “Badly approhimable affine forms and Schmidt games”, J. Number Theory, 129:12 (2009), 3020–3025 | DOI | MR | Zbl

[52] M. Einsiedler, J. Tseng, Badly approximable systems of affine forms, fractals, and Schmidt games, arXiv: 0912.2445

[53] N. G. Moshchevitin, “A note on badly approximable affine forms and winning sets”, arXiv: 0812.39998

[54] D. Y. Kleinbock, G. A. Margulis, “Flows on homogeneous spaces and Diophantine approximation on manifolds”, Ann. of Math. (2), 148:1 (1998), 339–360, arXiv: math/9810036 | DOI | MR | Zbl

[55] D. Kleinbock, G. Margulis, J. Wang, Metric Diophantine approximations for systems of linear forms via dynamics, arXiv: 0904.2795v1

[56] D. Kleinbock, B. Weiss, “Modified Schmidt games and Diophantine approximation with weights”, Adv. Math., 223:4 (2010), 1276–1298, arXiv: 0805.2934v1 | DOI | MR | Zbl

[57] D. Kleinbock, B. Weiss, “Dirichlet's theorem on Diophantine approximations and homogeneous flows”, J. Mod. Dyn., 2:1 (2008), 43–62 | MR | Zbl

[58] A. Gorodnik, “Open problem in dynamics and related fields”, J. Mod. Dyn., 1:1 (2007), 1–35 | MR | Zbl

[59] W. M. Schmidt, “Diophantine approximations and certain properties of lattices”, Acta Arith., 18 (1971), 195–178 | MR | Zbl

[60] K. Mahler, “Lattice points in two-dimensional star domains. I”, Proc. London Math. Soc. (2), 49:1 (1946), 128–157 ; “Lattice points in two-dimensional star domains. II”, 158–167 ; “Lattice points in two-dimensional star domains. III”, 168–183 | DOI | MR | Zbl | DOI | MR | DOI | MR

[61] K. Mahler, “On lattice points in $n$-dimensional star bodies. I. Existence theorems”, Proc. Roy. Soc. London. Ser. A., 187 (1946), 151–187 | DOI | MR | Zbl

[62] J. W. S. Cassels, An introduction to the geometry of numbers, Grundlehren Math. Wiss., 99, Springer-Verlag, Berlin–Göttingen–Heidelberg, 1959, 344 pp. | MR | MR | Zbl | Zbl

[63] W. M. Schmidt, “Open problems in Diophantine approximations”, Diophantine approximations and transcendental numbers (Luminy, 1982), Progr. Math., 31, Birkhäuser, Boston, MA, 1983, 271–289 | MR | Zbl

[64] W. M. Schmidt, L. Summerer, “Parametric geometry of numbers and applications”, Acta Arith., 140:1 (2009), 67–91 | DOI | MR | Zbl

[65] N. G. Moshchevitin, Proof of W. M. Schmidt conjecture concerning successive minima of a lattice, arXiv: 0804.0120v1

[66] F. J. Dyson, “On simultaneous Diophantine approximations”, Proc. London Math. Soc. (2), 49:1 (1947), 409–420 | DOI | MR | Zbl

[67] K. Mahler, “On compound convex bodies. I”, Proc. London Math. Soc. (3), 5 (1955), 358–379 | DOI | MR | Zbl

[68] M. Laurent, “On transfer inequalities in Diophantine approximation”, Analytic number theory, Cambridge Univ. Press, Cambridge, 2009, 306–314, arXiv: math/0703146v1 | MR | Zbl

[69] Y. Bugeaud, M. Laurent, “On transfer inequalities in Diophantine approximation. II”, Math. Z., 265:2 (2010), 249–262, arXiv: 0811.2102v1 | DOI | Zbl

[70] N. M. Korobov, “Some problems in the theory of Diophantine approximation”, Russian Math. Surveys, 22:3 (1967), 80–118 | DOI | MR | Zbl

[71] N. M. Korobov, “An estimate of A. O. Gelfond”, Moscow Univ. Math. Bull., 38:3 (1983), 1–6 | MR | Zbl

[72] A. O. Gelfond, ““O teoreme Minkovskogo dlya lineinykh form i teoremakh perenosa””, prilozhenie k kn.: Dzh. V. S. Kassels, Vvedenie v teoriyu diofantovykh priblizhenii, IL, M., 1961, 202–209 | MR | Zbl

[73] Yu. V. Kashirskii, “Transference theorems”, Soviet Math. Dokl., 4 (1963), 505–508 | MR | Zbl

[74] C. L. Siegel, “Neuer Beweis des Satzes von Minkowski über lineare Formen”, Math. Ann., 87:1-2 (1922), 36–38 | DOI | MR | Zbl

[75] W. M. Schmidt, Y. Wang, “A note on a tranference theorem of linear forms”, Sci. Sinica, 22:3 (1979), 276–280 | MR | Zbl

[76] W. M. Schmidt, “On heights of algebraic subspaces and Diophantine approximations”, Ann. of Math. (2), 85:3 (1967), 430–472 | DOI | MR | Zbl

[77] Y. Bugeaud, M. Laurent, “On exponents of homogeneous and inhomogeneous Diophantine approximation”, Moscow Math. J., 5:4 (2005), 747–766 | MR | Zbl

[78] Y. Cheung, Hausdorff dimension of the set of singular pairs, arXiv: 0709.4534v2

[79] R. C. Baker, “Singular $n$-tuples and Hausdorff dimension. II”, Math. Proc. Cambridge Philos. Soc., 111:3 (1992), 577–584 | DOI | MR | Zbl

[80] R. C. Baker, “Singular $n$-tuples and Hausdorff dimension”, Math. Proc. Cambridge Philos. Soc., 81:3 (1977), 377–385 | DOI | MR | Zbl

[81] K. Yu. Yavid, “Otsenka razmernosti Khausdorfa mnozhestv singulyarnykh vektorov”, Dokl. AN BSSR, 31:9 (1987), 777–780 | MR | Zbl

[82] B. P. Rynne, “A lower bound for the Hausdorff dimension of sets of singular $n$-tuples”, Math. Proc. Cambridge Philos. Soc., 107:2 (1990), 387–394 | DOI | MR | Zbl

[83] B. P. Rynne, “The Hausdorff dimension of certain sets of singular $n$-tuples”, Math. Proc. Cambridge Philos. Soc., 108:1 (1990), 105–110 | DOI | MR | Zbl

[84] M. M. Dodson, “Hausdorff dimension, lower order and Khintchine's theorem in metric Diophantine approximations”, J. Reine Angew. Math., 432 (1992), 69–76 | DOI | MR | Zbl

[85] V. I. Bernik, Yu. V. Melnichuk, Diofantovy priblizheniya i razmernost Khausdorfa, Nauka i tekhnika, Minsk, 1988, 144 pp. | MR

[86] V. I. Bernik, M. M. Dodson, Metric Diophantine approximations on manifolds, Cambridge Tracts in Math., 137, Cambridge Univ. Press, Cambridge, 1999, 172 pp. | MR | Zbl

[87] W. M. Schmidt, “Two questions in Diophantine approximation”, Monatsh. Math., 82:3 (1976), 237–245 | DOI | MR | Zbl

[88] P. Thurnheer, “Zur diophantischen Approximation von zwei reellen Zahlen”, Acta Arith., 44:3 (1984), 201–206 | MR | Zbl

[89] P. Thurnheer, “On Dirichlet's theorem concerning Diophantine approximation”, Acta Arith., 54:3 (1990), 241–250 | MR | Zbl

[90] Y. Bugeaud, S. Kristensen, “Diophantine exponents for mildly restricted approximation”, Ark. Mat., 47:2 (2009), 243–266 | DOI | MR | Zbl

[91] N. G. Moshchevitin, On Diophantine approximations with positive integers: a remark to W. M. Schmidt's theorem, arXiv: 0904.1906v1

[92] H. Davenport, W. M. Schmidt, “A theorem on linear forms”, Acta Arith., 14 (1968), 209–223 | MR | Zbl

[93] H. Weyl, “Über die Gleichverteilung von Zahlen mod. Eins”, Math. Ann., 77 (1916), 313–352 | MR | Zbl | Zbl

[94] I. P. Cornfeld, S. V. Fomin, Ya. G. Sinai, Ergodic theory, Grundlehren Math. Wiss., 245, Springer-Verlag, New York, 1982, x+486 pp. | MR | MR | Zbl | Zbl

[95] Yu. Peres, “A combinatorial application of the maximal ergodic theorem”, Bull. London Math. Soc., 20:3 (1988), 248–252 | DOI | MR | Zbl

[96] P. Bohl, “On a differential equation from perturbation theory”, J. Reine Angew. Math., 131 (1906), 268–321 | DOI | MR

[97] V. V. Kozlov, “On integrals of quasiperiodic functions”, Mosc. Univ. Mech. Bull., 33:1-2 (1978), 31–38 | MR | Zbl

[98] V. V. Kozlov, Metody kachestvennogo analiza v dinamike tverdogo tela, MGU, M., 1980, 231 pp. | MR | Zbl

[99] G. Halász, “Remarks on the remainder in Birkhoff's ergodic theorem”, Acta Math. Acad. Sci. Hungar., 28:3–4 (1976), 389–395 | DOI | MR | Zbl

[100] E. A. Sidorov, “Conditions for uniform Poisson stability of cylindrical systems”, Russian Math. Surveys, 34:6 (1979), 220–224 | DOI | MR | Zbl

[101] S. V. Konyagin, “Recurrence of the integral of an odd conditionally periodic function”, Math. Notes, 61:4 (1997), 473–479 | DOI | MR | Zbl

[102] N. G. Moshchevitin, “Recurrence of the integral of a smooth conditionally periodic function”, Math. Notes, 63:5 (1998), 648–657 | DOI | MR | Zbl

[103] N. G. Moshchevitin, “Distribution of Kronecker sequence”, Algebraic number theory and Diophantine analysis (Graz, 1998), de Gruyter, Berlin, 2000, 311–329 | MR | Zbl

[104] N. G. Moschevitin, Voprosy vozvraschaemosti dinamicheskikh sistem i diofantovy priblizheniya, Dis. $\dots$ dokt. fiz.-matem. nauk, M., 2003

[105] N. G. Moshchevitin, “Nonrecursiveness of the integral of a conditionally periodic function”, Math. Notes, 49:6 (1991), 650–652 | DOI | MR | Zbl

[106] H. Poincaré, “Sur les séries trigonométriques”, Comptes Rendus, 101:2 (1886), 1131–1134 | Zbl

[107] A. Puankare, O krivykh, opredelyaemykh differentsialnymi uravneniyami, Gostekhizdat, M., L., 1947

[108] N. G. Moshchevitin, “Recurrence of the integral of a smooth three-frequency conditionally periodic function”, Math. Notes, 58:5 (1995), 1187–1196 | DOI | MR | Zbl

[109] N. G. Moshchevitin, “Distribution of values of linear functions and asymptotic behavior of trajectories of some dynamical systems”, Math. Notes, 58:3 (1995), 948–959 | DOI | MR | Zbl

[110] E. V. Kolomeikina, N. G. Moshchevitin, “Nonrecurrence in mean of sums along the Kronecker sequence”, Math. Notes, 73:1–2 (2003), 132–135 | DOI | MR | Zbl

[111] O. N. German, N. G. Moshchevitin, “Linear forms of a given Diophantine type”, J. Number Theory Bordeaux (to appear)

[112] O. N. German, “Asymptotic directions for best approximations of $n$-dimensional linear forms”, Math. Notes, 75:1–2 (2004), 51–65 | DOI | MR | Zbl

[113] P. Erdös, “Problems and results on Diophantine approximations (II)”, Répartition modulo 1 (Marseille–Luminy, 1974), Lecture Notes in Math., 475, Springer, Berlin, 1975, 89–99 | DOI | MR | Zbl

[114] A. D. Pollington, “On the density of sequence $\{n_k\theta\}$”, Illinois J. Math., 23:4 (1979), 511–515 | MR | Zbl

[115] D. de Mathan, “Numbers contravening a condition in density modulo 1”, Acta Math. Acad. Sci. Hungar., 36:3–4 (1980), 237–241 | DOI | MR | Zbl

[116] Y. Katznelson, “Chromatic numbers of Cayley graphs on $\mathbb{Z}$ and recurrence”, Combinatorica, 21:2 (2001), 211–219 | DOI | MR | Zbl

[117] R. K. Akhunzhanov, N. G. Moshchevitin, “Density modulo 1 of sublacunary sequences”, Math. Notes, 77:5–6 (2005), 741–750 | DOI | MR | Zbl

[118] A. Dubickas, “On the fractional parts of lacunary sequences”, Math. Scand., 99:1 (2006), 136–146 | MR | Zbl

[119] A. Dubickas, “An approximation by lacunary sequence of vectors”, Combin. Probab. Comput., 17:3 (2008), 339–345 | DOI | MR | Zbl

[120] N. G. Moshchevitin, A version of the proof for Peres–Schlag's theorem on lacunary sequences, arXiv: 0708.2087v2

[121] N. G. Moshchevitin, Density modulo 1 of sublacunary sequences: application of Peres–Schlag's arguments, arXiv: 0709.3419v2

[122] N. G. Moshchevitin, “On small fractional parts of polynomials”, J. Number Theory, 129:2 (2009), 349–357 | DOI | MR | Zbl

[123] N. G. Moshchevitin, “On simultaneously badly approximable numbers”, Bull. London Math. Soc., 42:1 (2010), 149–154 | DOI | MR | Zbl

[124] N. G. Moshchevitin, Badly approximable numbers related to the Littlewood conjecture, arXiv: 0810.0777

[125] I. Rochev, On distribution of fractional parts of linear forms, arXiv: 0811.1547v1

[126] Y. Bugeaud, N. Moshchevitin, Badly approximable numbers and Littlewood-type problems, arXiv: 0905.0830

[127] J. W. S. Cassels, “Some metrical theorems in Diophantine approximation. I”, Proc. Cambridge Philos. Soc., 46 (1950), 209–218 | DOI | MR | Zbl

[128] P. Gallagher, “Metric simultaneous Diophantine approximation”, J. London Math. Soc., 37:1 (1962), 387–390 | DOI | MR | Zbl

[129] H. Furstenberg, “Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation”, Math. Systems Theory, 1:1 (1967), 1–49 | DOI | MR | Zbl

[130] M. D. Boshernitzan, “Elementary proof of Furstenberg's Diophantine result”, Proc. Amer. Math. Soc., 122:1 (1994), 67–70 | DOI | MR | Zbl

[131] J. Bourgain, E. Lindenstrauss, P. Michel, A. Venkatesh, “Some effective results for $\times a\times b$”, Ergodic Theory Dynam. Systems, 29:6 (2009), 1705–1722 | DOI | MR | Zbl

[132] W. M. Schmidt, Small fractional parts of polynomials, Regional Conf. Ser. in Math., 32, Amer. Math. Soc., Providence, RI, 1977, 41 pp. | MR | Zbl

[133] A. Zaharescu, “Small values of $n^2\alpha\pmod 1$”, Invent. Math., 121:2 (1995), 379–388 | DOI | MR | Zbl

[134] D. Badziahin, A. Pollington, S. Velani, On a problem in simultaneous Diophantine approximation: Schmidt's conjecture, arXiv: 1001.2694v1

[135] Y. Bugeaud, Approximation by algebraic numbers, Cambridge Tracts in Math., 160, Cambridge Univ. Press, Cambridge, 2004 | MR | Zbl

[136] K. Falconer, Fractal geometry: Mathematical foundations and applications, Wiley, Chichester, 1990, 288 pp. | MR | Zbl

[137] N. G. Moshchevitin, “Sublacunary sequences and winning sets”, Math. Notes, 78:3–4 (2005), 592–596 | DOI | MR | Zbl

[138] W. M. Schmidt, “Badly approximable systems of linear forms”, J. Number Theory, 1:2 (1969), 139–154 | DOI | MR | Zbl

[139] R. K. Akhunzhanov, “On nonnormal numbers”, Math. Notes, 72:1–2 (2002), 135–137 | DOI | MR | Zbl

[140] R. K. Akhunzhanov, “On the distribution modulo 1 of exponential sequences”, Math. Notes, 76:1–2 (2004), 153–160 | DOI | MR | Zbl

[141] Y. Bugeaud, R. Broderick, L. Fishman, D. Kleinbock, B. Weiss, Schmidt games, fractals, and numbers normal to no base, arXiv: 0909.4251

[142] V. A. Dremov, “On domains of $(\alpha,\beta)$-winning”, Dokl. Math., 65:3 (2002), 365–368 | MR | Zbl

[143] L. Fishman, “Schmidt's game, badly approximable matrices and fractals”, J. Number Theory, 129:9 (2009), 2133–2153 | DOI | MR | Zbl

[144] C. Freiling, “An answer to a question of Schmidt on $(\alpha,\beta)$ games”, J. Number Theory, 15:2 (1982), 226–228 | DOI | MR | Zbl

[145] C. Freiling, “Some new games and badly approximable numbers”, J. Number Theory, 19:2 (1984), 195–202 | DOI | MR | Zbl